
Part III

Hyperbolic Geometry
”... I bought a little blue cap, such as all the men and boys of the people

wear down there, almost like a fez—the boina. I shall wear it in the
rest-cure, and other places, perhaps. Monsieur shall judge if it becomes
me.”

”What monsieur?”

”Sitting here in this chair.”

”Not Mynheer Peeperkorn?”

”He has already pronounced judgment—he says I look charming in it.”

”He said that—all of it? Did he really finish the sentence, so it could be
understood?”

”Ah! It seems Monsieur is out of temper? Monsieur would be spiteful, cut-
ting? He would laugh at people who are much greater and better, and—
more hu—man than himself and his—his ami bavard de la Méditerranée,
son mâıtre et grand parleur—put together. But I cannot listen—”

Thomas Mann The Magic Mountain
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1 Hyperbolic Geometry in the Poincaré Model

1.1 Inversion

Definition 1.1 (The inverse point). Given is a circle ∂D of radius R. For any given
point P , we define the inverse point P ′ with respect to this circle to be the point on

the ray
−→
OP such that |OP | · |OP ′| = R2. A point on ∂D is its own inverse. For the

center O itself, the inverse point is the point at infinity.

Problem 1.1. Do a example for the construction of the inverse point.

Figure 1.1: Construction of the inverse point

Construction 1.1 (The inverse point). To construct the inverse of a given point P ,
one uses the the theorems related to the Pythagorean Theorem. One erects the perpen-
dicular h to radius OC at point P . This step is different from the elliptic case! Let C
an intersection of the perpendicular with ∂D. Next one erects the perpendicular on PC
at point C, and gets a tangent to circle ∂D. The inverse point P ′ is the intersection at
that tangent with the ray OP . Indeed, by the leg theorem, |OP | · |OP ′| = |OC|2 = R2.

Remark. Alternatively, you can use the Thales’ circle with diameter CP ′. By converse
Thales’ theorem, P lies on that circle. Then use the chord theorem Euclid III.36 and
get again, same as by leg theorem: |OP | · |OP ′| = |OC|2 = R2.

1.2 Points and lines in the Poincaré model

We explain now the Poincaré disk model of hyperbolic geometry. The reader should
recall the basic idea of a model in mathematics, as explained in the passage General
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remark about models in mathematics. The Poincaré disk model of hyperbolic geometry
is built in the Euclidean plane. The Euclidean geometry of the plane is the accepted
ambient underlying reality, which one can call the ”background ontology”. Some cleverly
chosen objects and relations from Euclidean geometry are now interpreted as objects
and relations of hyperbolic geometry.

Hence we have in the Poincaré’s disk model the ambient Euclidean plane as the
accepted basic reality. In this plane one builds the hyperbolic geometry as a new sec-
ondary level. In order to stress this new situation and distinguish the two levels, I use
quotation marks for the notions of hyperbolic geometry.

Definition 1.2 (Poincaré’s disk model). We denote the open unit disk by

D = { (x, y) : x2 + y2 < 1 }

The center of D is denoted by O. Its boundary is

∂D = { (x, y) : x2 + y2 = 1 }

The circle ∂D is also called the line at infinity.

• The points of D are the "points" for Poincaré’s model.

• The points of ∂D are called "ideal points" or "endpoints". The ideal points are
not points for the hyperbolic geometry. Once the hyperbolic distance is introduced,
they turn out to be infinitely far away.

• The "lines" for Poincaré’s model are circular arcs perpendicular to ∂D, open at
their ideal ends.

Problem 1.2. Construct the hyperbolic line through two given points, in the Poincaré
disk model.

The construction uses the inverse point and the polar elements, as now explained.

Lemma 1.1. If a circle passes through a pair of inverse points, it consists entirely of
pairs of inverse points, and it intersects ∂D perpendicularly.

A circle is a hyperbolic line if and only if it passes through a pair of inverse points
P and P ′.

Proof of the Lemma. Assume that a circle C passes through a pair of inverse points, P

and P ′. Let Q be a third point on the circle. We draw the rays
−−−→
OPP ′ and

−→
OQ. Let Q2

be the second intersection point of the ray
−→
OQ with circle C. Because of the theorem of

chords (Euclid III.35), we know that

|OP | · |OP ′| = |OQ| · |OQ2|
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Figure 1.2: A orthogonal circle consists of pairs inverted points

By definition of inverse points
|OP | · |OP ′| = 1

and hence
|OQ| · |OQ2| = 1

The point O lies outside the circle C, and hence Q and Q2 lie on the same side of O.
This confirms that the second intersection point Q2 = Q′ is the inverse point of Q.

Why do the circles C and ∂D intersect perpendicularly? The center O lies outside of
C, because circle C contains a pair of inverse points, We construct a tangent from point
O to circle C (Just one of the two tangents suffices.) Let T be the point at which the
tangent touches circle C. By construction OT ⊥ T l⊥. We apply the theorem of chords
(Euclid III.36) for circle C. Thus we get

|OP | · |OP ′| = |OT |2

By definition of inverse points
|OP | · |OP ′| = 1

and hence
|OT |2 = 1

This shows that the touching point T lies on ∂D, as well as on C. Since OT ⊥ T l⊥ this
implies that T l⊥ is a tangent to circle ∂D. By construction, OT is a tangent to circle
l. Hence we have got two perpendicular tangents to the two circles l and ∂D at their
intersection point T . This reasoning has shown that a circle passing through a pair of
inverse points is a hyperbolic line.
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The converse can be checked, too. We assume l is a hyperbolic line, and show that
l contains a pair of inverse points. Let T be an intersection point of the two circles ∂D
and l. Hence

|OT | 2 = 1

By definition of hyperbolic line, the two circles l and ∂D intersect perpendicularly, Hence
the segment OT is a radius of circle ∂D as well as a tangent to circle l. The tangent
from center O to the arc l touches circle l at point T . Let P be any point of l, and let

P” be the second intersection point of ray
−→
OP with the circle l. By Euclid’s theorem of

chords
|OT | 2 = |OP | · |OP”|

But by the definition of inverse points

|OP | · |OP ′| = 1

The three equations imply |OP ′| = |OP”|. Hence P ′ = P”, and the inverse point P ′

lies on circle l, too. Hence circle l goes through the pair of inverse points P and P ′.

Definition 1.3 (The polar of point and line). The perpendicular bisector of P and
P ′ is called the polar of point P . It is denoted by P⊥ or Pperp. The polar l⊥ of a
hyperbolic line l is the (Euclidean) center of the circular arc l. The polar elements—P⊥

for a point P , and l⊥ for a line l—always lie outside the disk D. [Sometimes, we denote
the midpoint of the segment PP ′ by K ′. See Klein’s model for the reason.]

The definitions of the polar for points and lines are consistent with incidence:

Fact. A point P lies on a hyperbolic line l if and only if the polar P⊥ goes through the
polar l⊥.

Reason. Assume point P lies on the hyperbolic line l. Since l is a hyperbolic line, the
arcs l and ∂D intersect perpendicularly. By the Lemma, this implies the arc l goes
through both point P and the inverse point P ′. Hence the center l⊥ of the arc l lies on
the perpendicular bisector of P and P ′, which we defined to be the polar P⊥.

Conversely, if the polar P⊥ goes through l⊥, the center l⊥ of the arc l has equal
distances from P and P ′. Hence the pair of inverse points P and P ′ lie on l. By the
Lemma, l is a hyperbolic line.

Construction 1.2 (Construct of a hyperbolic line through two given points).
Given are two points P and Q. To get the hyperbolic line l through P and Q, one
constructs the polar P⊥ and Q⊥. Their intersection point is the polar l⊥ of the line
through P and Q.

Question. What happens in the special case that P⊥ and Q⊥ are parallel? How does
one get the hyperbolic line PQ in that special case?
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Answer. The radius OP is perpendicular to P⊥, and, similarly, the radius OQ is per-
pendicular to Q⊥. The lines P⊥ and Q⊥ are parallel if and only if the two radii OP and
OQ are parallel. This happens if and only if the three points P,Q and the center of the
disk O lie on a Euclidean line .

In the special case that P⊥ and Q⊥ are parallel, the Euclidean line through the three
points P,Q and the center of the disk O is the hyperbolic line through P and Q, too.
Indeed , this line is a diameter of the disk D and hence perpendicular to ∂D.

Problem 1.3. Do the construction of a hyperbolic line through two given points, for an
example.

Figure 1.3: Construction of a hyperbolic line

Problem 1.4. Complete the following sentences, referring to the drawing below.

(a) The point D has the inverse image point A.

(b) The Euclidean line l is the polar of point A.

(c) The hyperbolic line α has the polar C.

(d) Point O is mapped to B via a reflection by the hyperbolic line α.

(e) Point B has as polar the Euclidean line B⊥, that is not drawn.
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Figure 1.4: Recognize inverse and polar elements.

(f) Since B lies on β, the polar B⊥ goes through the point β⊥.

(g) Since A lies on α, the polar A⊥ goes through the point α⊥.

(h) The polar of point A is line l.

(g) The polar of line α is point C.

(h) Indeed, line l goes through the point C.

1.3 Introduction of metric properties

Definition 1.4. The "angles" for Poincaré’s model are the usual Euclidean angles
between tangents to the circular arcs.

For the definition of a hyperbolic distance, one needs the cross ratio. The cross ratio
of four point A,B, P,Q is defined as

(AB,PQ) =
|AP | · |BQ|
|BP | · |AQ|

Remark. Remember
A B P → Q
↓ ↑
B A P → Q

Let A,B be any two points. We denote the hyperbolic line through A and B by l
and the ideal endpoints of this line by P and Q. We name those endpoints such that
P ∗B ∗ A ∗Q.
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Definition 1.5. The hyperbolic "distance" is defined by

(1.1) s(A,B) = ln(AB,PQ)

Two segments AB and XY are called "congruent" iff s(A,B) = s(X, Y ).

Remark. I denote the usual Euclidean distance of A and B by |AB|, or AB in case a plus
or minus value can be meaningfully assigned. But the hyperbolic distance is denoted
by s(A,B).

Proposition 1.1 (Additivity of the distance). Let A,B,C be three points on a
hyperbolic line, and assume that B lies between A and C. Then s(A,B) + s(B,C) =
s(A,C)

Reason. Again let P and Q be the ideal endpoints of the line through A,B,C. By
definition of the hyperbolic distance

(1.2)

s(A,B) = ln(AB,PQ) = ln
|AP | · |BQ|
|BP | · |AQ|

s(B,C) = ln(BC,PQ) = ln
|BP | · |CQ|
|CP | · |BQ|

s(A,C) = ln(AC,PQ) = ln
|AP | · |CQ|
|CP | · |AQ|

Hence

(1.3)

s(A,B) + s(B,C) = ln(AB,PQ) + ln(BC,PQ) = ln [(AB,PQ) · (BC,PQ)]
= ln

|AP | · |BQ|
|BP | · |AQ| ·

|BP | · |CQ|
|CP | · |BQ| = ln

|AP | · |CQ|
|CP | · |AQ|

= ln(AC,PQ) = s(A,C)

as to be shown

Proposition 1.2 (Distance from the center). The hyperbolic distance of a point A
form the center O is

(1.4) s(O,A) = 2 tanh−1 |OA|
Proof. One can take for A a point with coordinates (a, 0), and B has coordinates (0, 0).
The ideal endpoints of the horizontal diameter of D are P = (−1, 0) and Q = (1, 0).
Hence the cross ratio is

(AO,PQ) =
|AP | · |OQ|
|OP | · |AQ| =

(1 + a) · 1
1 · (1− a)

and the hyperbolic distance is

s(A,O) = ln(AO,PQ) = ln
(1 + a) · 1
1 · (1− a)

= 2 tanh−1 a = 2 tanh−1 |OA|
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Question. What happens if point A is very near to O? What happens if point A
approaches the boundary ∂D?

Answer. If point A is near to the center O, the tangent approximation gives s(O,A) �
2 |OA|. If point A approaches the boundary ∂D, we get |OA| → 1 and hence s(O,A) →
∞. This confirms the Poincaré disk is a model for the unbounded hyperbolic plane.

1.4 The angle of parallelism

This is indeed a remarkable feature of hyperbolic geometry! Here are the basic definitions
and facts about the angle of parallelism. Given a line l and a point P not on l, one wants
to know what are the parallels to a through P . The asymptotic (or limiting) parallel
rays r+, r− from vertex P are the two rays that do not intersect line l, but all rays in
the interior of the angle ∠(r+, r−) do intersect the line l. We drop the perpendicular
from P onto line l. Let F be the foot point of that perpendicular and s = s(P, F ) be
its hyperbolic length.

Definition 1.6 (Angle of parallelism). The angle of parallelism is the angle between
either of the asymptotic parallel rays and the perpendicular from P onto line l. The
angle of parallelism depends only on the hyperbolic distance s. Following Lobachevskij,
one defines a special function, called π(s), giving the angle of parallelism π for a segment
of hyperbolic length s.

The function π(s) is explicitly given by a remarkable formula.

Proposition 1.3 (Lobachevskij’s formula for the angle of parallelism). For
any point P and line l, the angle of parallelism π(s) relates the hyperbolic distance
s = s(P, F ) from P to the foot point F of the perpendicular dropped on the line l.
Indeed, by the formula

(1.5) tan
π(s)

2
= e−s

Remark. In case one does not assume the axiom of completeness, the quantities on both
sides of claim (1.5) are still well defined in the ordered field for segment lengths. Only
solving for s requires the logarithmic function ln to be defined—to which end one needs
the axiom of completeness.

Proof. Let X+ = (1, 0), X− = (−1, 0) and Y+ = (0, 1), Y− = (0,−1) be the ideal end-
points of the horizontal and vertical diameter of D. The hyperbolic distance s = s(O,P )
is defined to be

(1.6) s = s(O,P ) = ln(OP, Y+Y−)

in terms of the cross ratio (OP, Y+Y−). By definition, this cross ratio is

(1.7) (OP, Y+Y−) =
|OY+| · |PY−|
|PY+| · |OY−| =

|PY−|
|PY+| =

1 + |OP |
1− |OP |
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Figure 1.5: How to calculate the angle of parallelism.

Formulas (1.6) and (1.7) allow to calculate the hyperbolic distance s = s(O,P ) from
the Euclidean distance y = |OP |. Indeed

(1.8) es =
1 + y

1− y

Let R be the intersection point of the horizontal radius X−O with the Euclidean tangent
at point P to the asymptotic ray r−. The two tangents from point R to the circle r−
form the isosceles 	X−RP . Let its congruent base angles be β = ∠RX−P ∼= ∠RPX−.
The angle sum in the right 	X−OP implies that β+(β+π(s))+90◦ = 180◦ and hence

(1.9)
π(s)

2
= 45◦ − β

From the definition of the tangent function from the right 	X−PO, one gets

(1.10) tan β = |OP | = y

One now deducts the final claim from (4)(5) and (6). There are several variants to
do that, using more trigonometry, or more geometry. Here is a version relying on
trigonometry. We use the addition theorem of tangent and get

tan
π(s)

2
= tan(45◦ − β) =

tan 45◦ − tan β

1 + tan 45◦ · tan β =
1− tan β

1 + tan β
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Because of (1.10) and (1.8) we conclude

tan
π(s)

2
=

1− y

1 + y
= e−s

as to be shown.

Problem 1.5. Given an angle α, state a construction, in the Poincaré model, (and
using the underlying Euclidean geometry where needed), to find point P on the segment
OY for which π(OP ) = α is the angle α as given. Actually do an example for this
construction!

Figure 1.6: For given line l and angle of parallelism α = 40◦, point P is constructed.

Again, this can be done by putting point P and line l in a suitable special position.
We choose the line to be the horizontal diameter of D. Its ideals endpoints are denoted
by X+ and X−. We choose point P to lie on the positive y-axis. (Indeed, any point and
line can be mapped to that special position by a composition of two or three hyperbolic
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reflections.) In this arrangement, the foot point of the perpendicular from P onto l
is the center O. Let Y+ and Y− be the ideal endpoints of the perpendicular. The

asymptotic parallel rays for point P and line X+X− are the hyperbolic rays r+ =
−−−→
PX+

and r− =
−−−→
PX−.

Construction 1.3 (Construction of a segment from given angle of parallelism).
Let Q be the ideal endpoint in the positive quadrant such that ∠Y+OQ = α. Next draw
chord X−Q and let point P its intersection point with with OY+. We claim that the
segment OP has the angle of parallelism α.

Reason for validity of the construction. The angle sum in the isosceles 	X ′OQ implies
that 2β + (90◦ + α) = 180◦. By comparison with formula (5) above this implies α =
π(OP ), as claimed.

Figure 1.7: A more geometric proof of Lobachevskij’s formula for angle of parallelism.

Remark. Too, we get a more geometric proof of Lobachevskij’s formula (1.5), avoiding
the addition theorem for the tangent function. Repeatedly, we shall use Euclid III.20,
and Apollonius’ Lemma 1.2 about the angular bisector.
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Lemma 1.2. The angular bisector of any triangle cuts the opposite side in the ratio of
the lengths of the two adjacent sides.

Proposition 1.4 (Euclid III.20). The angle at the the center of a circle is twice the
angle with its vertex at a point of the circumference, and subtending the same arc.

Proof. By Thales’ theorem, 	Y−Y+Q is a right triangle. Ray
−→
QP is an angular bisector

of the right angle. Indeed, by Euclid III.20, ∠X−QY− = 45◦, because arc X−Y− has the
central angle of 90◦. To calculate the ratio in (1.5), we now use the Lemma 1.2 about
the angular bisector. Hence

(1.11)
|PY+|
|PY−| =

|QY+|
|QY−|

By Euclid III.20, ∠Y+Y−Q = π(s)
2
, because arc Y+Q has the central angle of π(s) by

construction. Hence the definition of the tangent function implies

tan
π(s)

2
=

|QY+|
|QY−| =

|PY+|
|PY−| =

1− y

1 + y

Now we use (1.8) from item 3, and (1.11) above to get Lobachevskij’s formula (1.5) once
again.

1.5 Hyperbolic reflection

Proposition 1.5. The reflection by a hyperbolic line is the same mapping as the inver-
sion by that circle—for the underlying Euclidean plane.

Proof. Let l be any hyperbolic line and A a point not lying on l. By Il we denote the
inversion by circle l, and the inverted images are denote by subscript l. Note that we
study a different inversion here, not the inversion P �→ P ′ by circle ∂D! By definition
of inversion, the inverted image Al of A satisfies

(1.12) |l⊥A| · |l⊥Al| = r2l

where rl is the radius of the circular arc l.
To need to show that Al can be obtained independently by hyperbolic reflection.

To this end, we draw the hyperbolic line p through points A and Al and let S be the
intersection of l and p. By definition of reflection, we need to check that

(i) Lines l and p are perpendicular.

(ii) The distances s(A, S) = s(S,Al) are equal.

The first step is to show that lines l and p intersect perpendicularly. We draw the
tangent from the polar l⊥ to circle p, and let T be the touching point of that tangent
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Figure 1.8: The inversion by an orthogonal circle is a hyperbolic reflection.

which lies inside D. By definition, point T lies on circle p. By the theorem of chords
(Euclid III.36)

(1.13) |l⊥A| · |l⊥Al| = |l⊥T |2

Comparison of (1.12) and (1.13) implies that |l⊥T | = rl. Hence point T lies on circle l,
too, and thus T = S is the intersection of circles l and p. The segment l⊥T is a tangent
to circle p as well as a radius of circle l. By Euclid III.16, radius and tangent of circle
l are perpendicular to each other. Hence, at the intersection point T , the tangent to
circle p is perpendicular to the tangent to circle l.

Next we check item (ii). Any circle perpendicular to l is mapped to itself by the
inversion Il. This follows because inversion maps (generalized) circles to itself and
preserves angles. Note that those circles are only mapped to themselves as a set of
points, not point by point. Especially, the inversion Il maps both circles ∂D as well as
p to themselves. Hence Il maps the intersection p ∩ ∂D to itself. But p ∩ ∂D = {P,Q}
consists just of the two ideal endpoints of the hyperbolic line p. Because Il maps the
interior of circle l to the exterior, and vice versa, and one of the points P and Q lies in
the interior and the other in the exterior of circle l, we conclude that the inversion Il
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maps

(1.14) P �→ Q , Q �→ P , A �→ Al , Al �→ A , S �→ S

Especially, this implies that the three points l⊥, P,Q lie on a Euclidean line.

Proposition 1.6 (Characterization of perpendicular lines). If two hyperbolic lines
l and p intersect each other perpendicularly, then the polar l⊥ of one line l and the ideal
endpoints P and Q of the other line p lie on a Euclidean line.

The converse of this statement holds, too. Now we can finally confirm claim (ii):
s(A, S) = s(S,Al). By the definition of hyperbolic distance

(1.15) s(A, S) = ln(AS,QP ) , s(S,Al) = ln(SAl, QP )

The inversion Il maps points according to (3), and the cross ratio is preserved by inver-
sion. Hence

(1.16) (AS,QP ) = (AlS, PQ)

As a last step, we use the elementary fact about cross ratios that (AB,CD) = (BA,DC).
Hence (1.15) and (1.16) imply s(A, S) = s(S,Al), as to be shown.

Figure 1.9: The inversion by line l maps the given point A to the center O. Furthermore,
B and C are mapped to Br and Cr.

Proposition 1.7 (An especially useful reflection). For a given point A, there exists
a unique the hyperbolic line l, the inversion by which maps A to the center O.

Problem 1.6. Explain a construction for this hyperbolic line l.

Construction. Draw the radial ray
−→
OA. Erect on it the perpendicular at point A. Let

P be one of the two points where the perpendicular intersects the circle ∂D. Erect the
perpendicular on the radius OP . This is a tangent to the circle ∂D. It intersects the ray−→
OA in the inverse point A′. The polar of the reflection line is l⊥ = A′. The hyperbolic
line l is given, in the Poincaré model, by the circle with center l⊥ through point P .
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1.6 Proof of the SAS axiom via the Poincaré model

Figure 1.10: Sorry, the triangles 	ABC and 	XY Z are not congruent.

Proposition 1.8 (SAS congruence for the Poincaré Model). Given are two tri-
angles 	ABC and 	XY Z, with the angles at vertices A and X, and adjacent sides
pairwise congruent:

(1.17) ∠CAB ∼= ∠ZXY , s(A,B) = s(X, Y ) , s(A,C) = s(X,Z)

Then the two triangles are congruent.

Reason. By construction (a) above, there exists a hyperbolic line α, the inversion Iα by
which maps A to O. In the same way, there exists a hyperbolic line φ such that the
inversion Iφ maps point X to the center O. We map 	ABC by the inversion Iα to
get the congruent 	OBαCα

∼= 	ABC. Similarly, we map 	XY Z by the inversion Iφ
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Figure 1.11: SAS congruence.

to get the congruent 	OYφZφ
∼= 	XY Z. Moreover, assumption (1) and transitivity

imply

(1.18) ∠CαOBα
∼= ∠ZφOYφ , s(O,Bα) = s(O, Yφ) , s(O,Cα) = s(O,Zφ)

Now it is quite easy to show that the two triangles	OBαCα and	OYφZφ are congruent
(still in the hyperbolic sense!). Indeed, lines through the center O are lines both in the
Euclidean and hyperbolic sense. The usual Euclidean reflection across such a line is

a hyperbolic reflection, too. One such reflection will map ray
−−→
OBα to ray

−−→
OYφ, and

	OBαCα to 	OB′C ′. Hence one gets a hyperbolic congruence

(1.19) 	OB′C ′ ∼= 	OBαCα
∼= 	ABC

and the rays
−−→
OB′ =

−−→
OYφ are equal. In case that points C ′ and Zφ lie on different

sides of ray OBα, one maps 	XZY by a reflection across that ray to get a hyperbolic
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congruence

(1.20) 	OY ′Z ′ ∼= 	OYφZφ
∼= 	XZY

In case that points C ′ and Zφ lie on the same side of ray OBα, one needs no second
reflection, but puts 	OY ′Z ′ := 	OYφZφ, and one gets formula (1.20) once more.

Now, after those further mappings by reflections, the triangles	OB′C ′ and	OY ′Z ′

are very easy to compare. Indeed (1.18) implies

(1.21) ∠C ′OB′ ∼= ∠Z ′OY ′ , s(O,B′) = s(O, Y ′) , s(O,C ′) = s(O,Z ′)

and the rays
−−→
OB′ =

−−→
OY ′ are equal, and points C ′ and Z ′ lie on the same side of

that ray. everybody can check that this simply implies that B′ = Y ′ and C ′ = Z ′.
(Actually, one uses the uniqueness for the lay off of angles and segments in Euclidean
geometry.) Now (1.19) and (1.20) and transitivity imply that the hyperbolic congruence
	ABC ∼= 	XY Z as to be shown.

1.7 Their are enough rigid motions

Theorem 1.1 (There are enough rigid motions). Given are two points P and Q,
and rays rP and rQ with these vertices. There exist exactly two rigid motions, which
map P to Q and rP to rQ.

Proof of the Theorem about enough rigid motions. As explained in proposition 1.7, there
exist an inversion Il which maps the given point P to the center O, and, similarly, an
inversion Ik which maps the given point Q to the center O. There exists a reflection Im
by a line m through O which maps the ray Il(rP ) to the ray Ik(rQ). The composition
Ik ◦ Im ◦ Il of these three mappings is a rigid motion which maps point P to point Q
and ray rP to ray rQ.

The second rigid motion which maps point P to point Q and ray rP to ray rQ, too,
is given by the composition Ik ◦ Im ◦ Il ◦ Ir where Ir is the reflection across the line of
rP .

From the lemma below, we see that these two mappings are the only rigid motions
with the required properties.

Lemma 1.3. Given any point P and ray rP . There exist exactly two rigid motions,
which leave the point P and the ray rP fixed. One of them is the identity, the other one
is the reflection Ir across the line of rP .

Proof. Let φ be a rigid motion leaving the point P and the ray rP fixed. As easily
checked, φ leaves all points on the line of rP fixed. Furthermore, the mapping either
exchanges the halfplanes of this line or leaves them invariant.

In the first case, the mapping φ is the identity. This is an easy consequence of the
unique transfer of segments and angles.
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Consider the second case that the mapping φ exchanges the halfplanes. Let Ir be the
reflection across the line of rP , and define the new mapping ψ := φ ◦ Ir. The mapping
ψ leaves the point P and the ray rP fixed, and leaves the halfplanes invariant. Hence,
by the reasoning above, ψ is the identity and hence φ = Ir.

The following explanation is almost unnecessary, as long as we set up the hyperbolic
geometry only in the Poincaré model:

Given is any point A, and ideal point (endpoint) E. Let AE denote the line through
A with endpoint E. For any line l, one ray of which is a limiting parallel to AE, we
simply say that l ”goes through the ideal point E”.

Corollary 57. Let any two points P and Q, and two ends E and F be given. There
exist exactly two rigid motions, which map P to Q and the ray PE to the ray QF .

Corollary 58. Every hyperbolic rigid motion of the Poincaré disk can be realized by a
composition of 0, 1, 2, 3 or 4 hyperbolic reflections.

Corollary 59. Realizing these hyperbolic reflections with inversion by circles or lines
produces a unique extension of any rigid motion as a bijective mapping of the underlying
Euclidean plane. The extended rigid motion conserves the pairs of inverse points.

Proof. The inversion Il which realizes the hyperbolic reflection by the line l has the
following property: If the inversion Il maps point A to point B, then it maps the inverse
point A′ to the inverse point B′—or written in one formula:

[Il(A)]
′ = Il(A

′)

To check this conjecture, take any two hyperbolic lines c and d intersecting in point A.
The corresponding circles in the Poincaré disk model have the inverse image A′ as their
second intersection point.

The inversion Il maps c and d into two circles Il(c) and Il(d), with the intersection
points Il(A) and Il(A

′). Since both Il(c) and Il(d) are orthogonal to the line of infinity
δD, they consist of pairs of inverse points. Hence [Il(A)]

′ ∈ Il(c)∩Il(d) = {Il(A), Il(A′)}
and [Il(A)]

′ = Il(A
′) as claimed.

Every hyperbolic rigid motion of the Poincaré disk can be realized by a composition
φ of up to four inversions by hyperbolic lines. Since

[φ(A)]′ = φ(A′)

holds for any such composition, too, we see that the extended rigid motion conserve
pairs of inverse points, too.

Proposition 1.9. Given a hyperbolic line l and two points A and B symmetric to this
line, any rigid motion φ maps these objects to an image line and two image points
symmetric with respect to the image line. Hence

φ(Il(A)) = Iφ(l)(φ(A)) and Iφ(l) = φ ◦ Il ◦ φ−1
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Theorem 1.2. Given any three different ends E, F and G, as well as their images three
different ends E ′, F ′ and G′. exactly one rigid motion, which maps E to E ′, F to F ′,
and G to G′,

1.8 Horocycle

Problem 1.7. For the following propositions and theorem, provide drawings in the
Poincaré disk model, using compass and straightedge. Copy, use and complete the draw-
ings to prove the statements.

Definition 1.7 (horocycle). A horocycle H around the endpoint E through point A
consists of all points Al obtained from A by a reflection across any line l through the
endpoint E.

Problem 1.8. Explain why a rigid motion maps a horocycle bijectively onto a horocycle.

Lemma 1.4. In the Poincaré disk, the horocycle around the ideal point E through the
center O is depicted by the circle with diameter OE.

Proof. In the figure on page 771, the center O is reflected across the lines l and k with
the common endpoint E. As shown in proposition 1.5, the hyperbolic reflection is an
inversion by an orthogonal circle.

We now argue using the underlying Euclidean plane. and use the construction 1.1 to
obtain the inverse point Ol.

55 The inverted point Ol is midpoint of the chord between
the end E and F of arc l. Too, it is the intersection of the ray Ol⊥ with the chord
between the end E and F of arc l, and we get a right angle ∠OOlE. By the converse
Thales’ theorem, we see that Ol lies on a circle with diameter OE. Hence points of the
horocycle around the ideal point E through the center O, as given by definition 1.7, lie
on the circle with diameter OE. As easily seen, the converse holds, too.

Lemma 1.5. In the Poincaré disk, the horocycle around the ideal point E through any
point A is depicted by the circle through A touching the line of infinity δD at the ideal
point E.

Proof. By theorem 1.1, there exists a rigid motion φ which maps point A to the center
O, but leaves the end E fixed. The horocycleH through O is depicted as a circle through
O touching the line of infinity ∂D from inside at the ideal point E. The inverse image
φ−1(H) is depicted as a circle through A touching the line of infinity ∂D from inside at
the ideal point E. Clearly the inverse image is a horocycle, too.

Definition 1.8 (tangent to a horocycle). Given is the horocycle H around the
endpoint E through point A. The line t through A perpendicular to AE is called the
tangent to the horocycle at point A.

55This time we go from outside to inside the circle l.
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Figure 1.12: The set of the reflective images of center O across all lines with endpoint E
yields the horocycle around E through O.

Proposition 1.10. The tangent to a horocycle at any point B meets the horocycle only
at this touching point. Any other line through the touching point cuts the horocycle in
two points B �= C.

Proof. There exists a rigid motion φ which maps point B to the center O. Hence it
is enough to prove the claim for a horocycle H through O. Let E be the end around
which this horocycle goes. In the Poincaré model H is depicted as a circle with diameter
OE. The tangent to H at O is depicted as the diameter of ∂D perpendicular to OE.
Any other hyperbolic line through O is depicted as another diameter of ∂D. Hence it
intersects H in two points—which clearly are hyperbolic points, as to be shown.

Lemma 1.6. For horocycle around the ideal point E through the center O of the
Poincaré disk, and any line l with ideal point E, the limit triangle 	OEOl has con-
gruent angles at vertices O and Ol.

Proof. By definition of the horocycle, these two points O and

Q = Il(O)
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are mirror images for a hyperbolic reflection across a line l with one end E. There exists
a rigid motion ψ which maps line l to a diameter ψ(l) and leaves E fixed. As image of
the mapping, we get the horocycle ψ(H) around E through the two points ψ(O) and
ψ(Q). As explained above,

ψ(Q) = Iψ(l)(ψ(O))

and the two image points are symmetric mirror images by the line ψ(l), Since ψ(l) is a
diameter of δD, this holds in the Euclidean sense, too. And since E = ψ(E), and this
point is fixed both by the inversion Il and the inversion ψ(l), it lies on the diameter
ψ(l). Hence the limit triangle 	ψ(O)ψ(E)ψ(Q) is symmetric to this diameter both in
the Euclidean, and the hyperbolic sense. Hence it has congruent base angles, and the
limit triangle 	OEQ has congruent base angles, too, as to be shown.

Lemma 1.7. If point B lies on the horocycle around A through the ideal end E, and
point C lies on the horocycle around B through the same ideal end E, then point C lies
on the horocycle around A through the ideal end E.

Proof. Assume point B lies on the horocycle HA around the ideal end E. Assume point
C lies on the horocycle HB around B through the same ideal end E,

In the Poincareé model, horocycle HA is depicted as a circle touching the line of
infinity δD at the ideal point E from inside, and going through point A. A circle is
uniquely determined by two points, and the tangent at one of them. Hence HA = HB.
From this, we see that point C lies on this same horocycle, too.

Proposition 1.11. For a horocycle around the ideal end E through any two points B
and C, the limit triangle 	BCE has congruent angles at vertices B and C.

Proof. There exists a rigid motion φ which maps point B to the center O. Let φ(C) = Q.
It is enough to prove the claim for the image horocycle φ(H) through O and Q. But
this has already been done in the Lemma above.

Proposition 1.12. Given any point A and ideal point E. The set of all points B such
that the limit triangle 	ABE has congruent angles at vertices A and B is equal to the
horocycle around the ideal point E through point A.

1.9 Circles and hypercircles

Recall the easy definitions from neutral triangle geometry.

Definition 1.9 (Circle). Given is a center A and a distance AX. The set of all points
with distance from the center O congruent to AX is called a circle.

Definition 1.10 (Equidistance line). Given is a baseline l and a distance AX. The
set of all points with distance from a baseline l congruent to AX, and lying on one side
of this line, are called an equidistance line or hypercycle.
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Figure 1.13: A circle appears as a circle—evidently for a circle about O, and hence always
by means of a useful reflection.

Proposition 1.13 (Circles appear as circles). In the Poincaré disk model, a circle
appears as a circle inside the disk D.

Reason. In the special case that the center of the given circle A = O is the center of
the Poincaré disk, the statement is obviously true. Otherwise, we use Proposition 1.7.
There exists a unique orthogonal circle l, the inversion by which maps the center A of
the given circle A to the center O of the Poincaré disk.

By Proposition 1.5, the inversion by l is a hyperbolic reflection. Hence the circle A is
mapped to a circle around O, which appears in the Poincaé model as a circle C around
O.

A second application of the inversion by l maps circle C back to the original given
circle A. As we have shown in the section about inversion by circles, inversion maps
circles to circles. Hence A appears as a circle inside Poincaré’s model.

Proposition 1.14 (Equidistance lines are circular arcs). In the Poincaré disk
model, the set of all points of a given hyperbolic distance d from a given line l lie on two
circular arcs.

Reason. It suffices to take for the line l the horizontal diameter EF of ∂D, and choose
a point B on the vertical diameter m. The foot point of the perpendicular from B onto
l is A = O. By definition, the hyperbolic distance of the two points A and B is

(1.22) s(A,B) = ln(AB,PQ)

where P and Q are the ideal endpoints of the vertical diameter m.
Let ε be the circular arc through point B and the two ideal endpoints E,F of line l.

Note that the circular ε is neither a line nor a circle in hyperbolic geometry!
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Figure 1.14: An equidistance line is a circular arc with two ideal endpoints.

Question. Why is ε not a hyperbolic line?

Answer. Circles ∂D and ε do not intersect perpendicularly.

We need to show that all points of ε have the same distance from line l. One begins
by choosing an arbitrary point Bσ of ε. Let σ⊥ be the intersection of the Euclidean
lines l and BBσ. Construct the tangent from σ⊥ to the circular arc ε, and let S be the
touching point of the tangent. Let σ be a circular arc through S around σ⊥.

Is σ a hyperbolic line? To answer that question, apply Euclid III.36 to circle ε and
chords through σ⊥. One gets

(1.23) |σ⊥S|2 = |σ⊥B| · |σ⊥Bσ| = |σ⊥|E · |σ⊥F |
This shows that by inversion Iσ across the circular arc σ maps:

(1.24) S �→ S, B �→ Bσ, E �→ F, F �→ E

The inversion Iσ maps line l to itself. Hence by preservation of angles and generalized
circles, the inversion Iσ maps circle ∂D to itself. Is circle ∂D mapped to itself point by
point?

Answer. No, formula (1.24) shows that the two points E,F of circle ∂D are interchanged
by the mapping Iσ.

Because inversion by σ maps the entire circle ∂D to itself, circles ∂D and σ intersect
perpendicular, and hence σ is a hyperbolic line. Hence, as shown in the lecture, inversion
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by circle σ is a hyperbolic reflection. Next we map the points A,P and Q of m by this
reflection, and get the reflected points Aσ, Pσ and Qσ. The two points Pσ and Qσ are the
ideal endpoints of line of the reflected line mσ. Because line mσ and l are perpendicular
to each other, the perpendicular from Bσ onto line l has the foot point Aσ, and hence
d(Aσ, Bσ) is the distance form point Bσ to line l. Because the cross ratio is conserved
by circular inversion, we get

s(Aσ, Bσ) = ln(AσBσ, PσQσ) = ln(AB,PQ) = s(A,B)

This shows that points B and Bσ have the same distance from line l. Because point Bσ

was chosen arbitrarily, we conclude that all points of the arc ε have the same distance
from line l. The second arc the points of which have the same distance from l is produced
by reflection across line l.

1.10 We have obtained all circle-like curves

It can happen in hyperbolic geometry that three points lie neither on a line nor a circle.
We have seen three types of circle-type curves: circle, equidistance line, and horocycle.
We now obtain—via the Poincareḿodel—a satisfactory theorem confirming that we have
found all types of circle-type curves.

Theorem 1.3. In the hyperbolic plane, any three different points lie either on a line, a
circle, a horocycle, or an equidistant line. In the Poincared́isk model

a circle is depicted as a circle lying inside the disk D.

a hyperbolic line is a circular or straight arc, which has two intersection points with
the line of infinity ∂D, and intersects it perpendicularly.

an equidistance line is a circular or straight arc, which has two intersection points
with the line of infinity ∂D, but not a perpendicular angle of intersection.

a horocycle is a circle touching the line of infinity δD from inside This is simply the
remaining possible case!

1.11 Towards the Klein model

The relation of hyperbolic lines and their chords is useful for the translation from
Poincaré’s to Klein’s model.

Proposition 1.15 (Hyperbolic lines and their chords). Given are two or more
hyperbolic lines l, l1, l2, . . . all through one point P .

(a) The chords between the ideal endpoints of lines l, l1, l2 . . . all intersect in one com-
mon point K, too.
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(b) The inverse point K ′ is the midpoint of the segment PP ′ between P and its inverse
point P ′.

(c) The location of the point K on the ray
−→
OP is given by

(1.25) |OK| = 2 |OP |
1 + |OP | 2

For the proof, we need to recall, from Euclidean geometry of circles II, the definition
of power p(O, C) of a point O with respect to a circle C: For any circle C and point O,
let

p(O, C) = |OA| · |OB|
where A and B are the two intersection points of a line l through O with the circle C. If
a second line k intersects the circle C in the points P and Q, by Euclid III.35 and III.36,

|OA| · |OB| = |OP | · |OQ|

Hence the power p does not depend on the choice of the line l, and thus is well defined.
The power is negative for points inside the circle and positive for points outside the
circle.

Figure 1.15: The chords of a bundle of hyperbolic lines through a common point P intersect
in a common point K.
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Proof of (a). Pick one line l, let E,F be the ideal endpoints of l, and define point K
as the intersection of chord EF with chord PP ′, where P ′ is the inverse image of P .
Actually, EF is the common chord of ∂D and l, and hence

p(K, ∂D) = |KE| · |KF | = p(K, l)

We now calculate the power of K relative to l. Since PP ′ is the common chord of all
hyperbolic lines through point P .

p(K, l) = |KE| · |KF | = |KP | · |KP ′|

Clearly the last two formulas imply

p(K, ∂D) = |KP | · |KP ′|

which confirms that p(K, ∂D) is independent of the choice of the line l. Since point K

lies on the ray
−→
OP , we conclude point K is independent of the choice of the line l.

(We may repeat the same process for another line l1. It would be possible that we get
another intersection point K1 of chord E1F1 with chord PP ′. But, as we have shown,
K1 = K does hold.)

Proof of (b). We draw the circle t with diameter PP ′. Let K ′ be its center, and RS be
the common chord of circles ∂D and t. Since t passed through the pair of inverse points
P and P ′, the circles t and ∂D are orthogonal to each other. Hence ∠ORK ′ = 90◦ and
RK is the altitude of the right 	ORK ′. Now |OK| · |OK ′| = |OR| 2 = 1 follows from
the leg theorem in this 	OSK ′. Hence the center K ′ of circle t is the inverted point of
the foot point K. By construction, K ′ is the midpoint of diameter PP ′.

Proof of (c). Since the inverse point K ′ is the midpoint of the segment PP ′ between P
and its inverse point P ′, we use the definition of inverse points twice and get

|OK| = 1

|OK ′| =
2

|OP ′|+ |OP | =
2 |OP |

|OP ′| · |OP |+ |OP | 2 =
2 |OP |

1 + |OP | 2

which confirms claim (1.25).
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2 Geometric Constructions in the Poincaré Disk

Before we start. These constructions are done using compass and straightedge of the
ambient Euclidean plane and are to be described in terms of the Euclidean geometry
of that ambient plane. Use the conventions from the section about Poincaré’s model to
keep your explanations short! For each problem, provide drawings and set up a step by
step construction process.

2.1 Basic constructions from neutral geometry

Figure 2.1: How to construct a hyperbolic line through two given points A and B.

Problem 2.1. For two given points A and B, construct the hyperbolic line l through A
and B.

Construction 2.1. One needs the inverse point of either A or B, say A′. The hy-
perbolic line l is modelled by a circle through A,A′ and B. Its center l⊥ is found as
intersection point of the perpendicular bisectors of the sides of 	AA′B. One can, for
example construct the perpendicular bisector A⊥ of segment AA′, and the perpendicular
bisector of AB. Finally, one draws a circular arc around l⊥ through point A. This arc
passes through points B,A′ and B′, too.
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Figure 2.2: Construct the line bisector for two given points A and B.

Problem 2.2. For two given points A and B, construct the perpendicular bisector μ.
Hint: Let A′, B′ be the inverse points of A,B by ∂D. Both pairs A,B and A′, B′ are

inverse points by circle μ.

Construction 2.2. The Euclidean lines
←→
AB and

←−→
A′B′ intersect in the point μ⊥. The

perpendicular bisector in modelled by a circle around μ⊥ perpendicular to ∂D. One needs
still to get the correct radius. The ideal endpoints μ1, μ2 of μ are the touching points of
the tangents from μ⊥ to ∂D. These points are constructed via Thales’ theorem. Indeed
μ1,2 lie on a circle with diameter Oμ⊥. Finally μ is the circle about μ⊥ through μ1,2.

Problem 2.3. Given is a hyperbolic line δ =
←→
EF , with ideal endpoints E and F , and

a point P on the line δ. Use the given drawing, with P, P⊥, δ⊥, E, F already available
to erect the perpendicular σ on the line δ at point P . Use the ideal endpoints S and T
of σ to check the accuracy of your drawing. In this first variant, make use of the ideal
endpoints.

Construction 2.3. The Euclidean lines
←→
EF and P⊥ intersect at point σ⊥.

Finally, to get σ is easy, one simply draws a circular arc with center σ⊥ through
point P .

Remark 1. One need not even construct the tangent from σ⊥ to ∂D. Since δ ⊥ σ, it is
known that the ideal endpoints S and T of σ and δ⊥ lie on a Euclidean line. This fact
can be used to check the accuracy of the construction.
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Figure 2.3: Erect a perpendicular on line δ at point P , using Construction 2.3.

Figure 2.4: Erect a perpendicular on line δ at point P , using the right angle as explained
in Remark 2. Finally, combining the two constructions yields better accuracy.

Remark 2. As an alternative construction, one can also erect the perpendicular on the

radial ray
−−→
Pδ⊥ at vertex P . Again, that perpendicular intersects line p⊥ at the polar

point σ⊥. Using both constructions gives another possibility for better accuracy.

Problem 2.4. Given is a hyperbolic line δ =
←→
EF , with ideal endpoints E and F , and a

point P not on the line δ. Use the given drawing, with P, P⊥, δ⊥, E, F already available
to erect the perpendicular σ on the line δ at point P . Use the ideal endpoints S and T
of σ to check the accuracy of your drawing.
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Figure 2.5: Drop a perpendicular onto line δ from the given point P .

Construction 2.4. The Euclidean lines
←→
EF and P⊥ intersect at point σ⊥. Finally, to

get σ is easy, one simply draws a circular arc with center σ⊥ through point P .

Problem 2.5. Given is a hyperbolic line δ =
←→
EF , and a point P on the line δ, and an

angle α. Use the given drawing, with P, P⊥, δ⊥ already available. Construct two lines
ε1, ε2 through point P that form the given angle α with the given line δ.

Construction 2.5. Transfer the given angle α onto both sides of the radial ray
−−→
Pδ⊥ at

vertex P . The two new sides produced by angles α intersect line p⊥ in the polar points
ε⊥1 , ε

⊥
2 . Now it is straightforward to get ε⊥1 , ε

⊥
2 , because one has already the point P on

these lines. One simply draws two circular arcs with centers ε⊥1 and ε⊥2 through point P .

Problem 2.6. For two given intersecting lines α and β, construct an angle bisector δ.
Explain how you can get the second bisector.

Construction 2.6. Let A1, A2 and B1, B2 be the ideal endpoints of lines α and β.

One angular bisector δ has polar δ⊥ at the intersection of the Euclidean lines
←−→
A1B1

and
←−→
A2B2. The second angular bisector δ2 has polar its δ⊥2 at the intersection of the

Euclidean lines
←−→
A1B2 and

←−→
A2B1. Finally one has to draw the hyperbolic lines δ and δ2.

They are modelled by circular arcs with centers δ⊥ and δ⊥2 through the intersection point
P of lines α and β.

Alternative Construction. Let P be the intersection point of lines α and β. Let ε be
the bisector of ∠α⊥Pβ⊥, and let ε2 be the outer bisector of that angle. (Indeed ε2 is
perpendicular to ε.) One angular bisector δ of the given lines α and β has its polar δ⊥
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Figure 2.6: Transfer a given angle to a given ray. The example takes α = 10◦.

at the intersection of the Euclidean lines
←−−→
α⊥β⊥ and ε. The second angular bisector δ

of lines α and β has its polar δ⊥2 at the intersection of the Euclidean lines
←−−→
α⊥β⊥ and

ε2.
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Figure 2.7: Construction of the angular bisectors.
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2.2 Typically hyperbolic constructions

Figure 2.8: Construction of the middle line of two parallel lines.

Problem 2.7. For two divergently parallel lines α and β, construct the middle line δ.
The reflection by this line maps α to β.

Construction 2.7. Let A1,2 and B1,2 be the ideal endpoints of lines α and β. The
numbering is such that, as one moves around the boundary circle δD, point A1 lies
adjacent to B1, and point A2 adjacent to B2. The middle line δ has polar δ⊥ at the

intersection of the Euclidean lines
←−→
A1B1 and

←−→
A2B2. (This intersection point lies outside

the disk D, whereas the intersection of the Euclidean lines
←−→
A1B2 and

←−→
A2B1 lies inside

D.)

Problem 2.8. For two divergently parallel lines α and β, construct the common per-
pendicular μ.

Construction 2.8 (Variant 1). The common perpendicular μ has polar μ⊥ at the in-

tersection of the Euclidean lines
←−→
A1A2 and

←−→
B1B2.

Problem 2.9. For two divergently parallel lines α and β, find a second way to construct
the common perpendicular μ.

Construction 2.9 (Variant 2). Draw the Euclidean line c =
←−−→
α⊥β⊥ connecting the polars

of the two given lines. The M be the foot point of the perpendicular dropped from O onto
this line c. The inverse point M ′ = μ⊥. It is constructed by putting the tangents to circle
∂D at the intersection points c with ∂D. Those two tangents and the perpendicular OM
intersect all three in the point μ⊥.
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Figure 2.9: Construction of the common perpendicular of two parallel lines.

Figure 2.10: Variant 2 for the construction of the common perpendicular of two parallel
lines— and a figure showing both variants.

Question. Describe and explain the simultaneous construction of the middle line and
the common perpendicular of two parallel lines done in the figure on page 786.
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Figure 2.11: Given two parallel lines α and β, the middle line δ and the common perpen-
dicular μ are constructed simultaneously.

2.3 Circle constructions

Problem 2.10. For two points A and B, construct a circle ε with center A through
point B.

(a) Assume the prescribed center A �= O and point B do not lie on the diameter OA.
Moreover, assume the hyperbolic line r = AB has already been constructed.

(b) Assume the prescribed center A �= O and point B lie on the diameter OA.

Construction 2.10. One needs to find the Euclidean quasi-center M of circle ε. It lays
both on the segment OA, and on the tangent to the arc r at point B.

(a) In this case, these are two different lines which intersect in the quasi-center M .

(b) If center A, disk-center O and point B lie on a line—or even for a point B lying too
close to the diameter OA—we construct at first a second point B” on the circle.

To this end, we erect the hyperbolic perpendicular a to OA at point A, and reflect
point B by line a. Since B and the reflection image B” have the same hyperbolic
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Figure 2.12: Construction of a circle with given center A through point B.

Figure 2.13: Construction of a circle with given center A through point B, which is on or
close to line OA.

distance from A, both lie on the circle to be constructed. The circle is perpendicular
to line OA, and hence its center M is the intersection of the perpendicular bisector
of BB” with segment OA.

Problem 2.11. For two points A and B, construct a circle ε with center O and radius
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Figure 2.14: How to construct of a circle around O with given hyperbolic radius.

equal to the hyperbolic distance s(A,B).

Construction 2.11. Proceed as in the example ”A useful reflection” to get the hyper-
bolic line α, the reflection by which maps point A to the center O. This reflection maps
point B to image point Bα. One has to construct Bα via inversion by α. To this end,

one draws the radial ray
−−→
A′B, and a perpendicular on it through point B, which intersect

circle α in point Q. Then one erects the perpendicular on A′Q at point Q. It intersect

the ray
−−→
A′B in the inversion point Bα. The circle around O through point Bα has the

hyperbolic radius s(A,B) = s(Aα, Bα) = s(O,Bα) as required.
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2.4 Triangle constructions

Proposition 2.1 (Construction of a triangle from its three angles). In hyperbolic
geometry, its three angles determine a triangle up to congruence. Indeed, for any given
angles α, β, γ with sum α+β+γ < 180◦, there exists a triangle, unique up to congruence.

To achieve a construction in the Poincaré disk, it is convenient to chose the vertices
first, and determine the disk D in a second step. Such a procedure does not introduce
a real restriction, because, in an extra step, a linear delation can be used to map the
entire figure such that the disk falls into any disk given in advance. Furthermore, we
shall choose vertex C at the center of disk D.

Construction 2.12. Let σ = α+β+γ be the angle sum and δ = 180◦−α−β−γ be the
defect. One begins by drawing ∠Ac⊥B = δ as given. Then draw a circle c with center
c⊥ of any radius. We can assume that A and B lie on that circle, and construct the
tangents to c at A and B. Next, we lay off the angles α at vertex A, and β at vertex B,
with intersecting tangent rays as one of their legs, and the second legs outside of circle c.
Those second legs intersect at point C = O, and form an angle γ. Finally, one needs the
boundary ∂D of the Poincaré disk. To this end, one constructs the tangents from point
C to circle c. The touching points S, T of these tangents can be constructed via Thales’
theorem. Indeed S and T lie on a circle with diameter c⊥C. Finally the boundary ∂D
is the circle about C through S and T . (Indeed, the points S, T are the ideal endpoints
of the triangle side AB, too.)

Problem 2.12. Do the construction with given angles α = 40◦, β = 50◦, γ = 60◦.

Proposition 2.2. In hyperbolic geometry, its three angles determine a triangle up to
congruence. Indeed, for any given angles α, β, γ with sum α+β+ γ < 180◦, there exists
a triangle, unique up to congruence. Too, there exist asymptotic triangles for which one,
two, or even all three of its vertices are ideal endpoints. In the disk model, these ideal
endpoints simply lie on ∂D. The angle at an ideal vertex is zero.

Construction 2.13 (Construction of an asymptotic triangle from its two an-
gles). We assume that vertex C is ideal, and hence γ = 0. For simplicity, we take for

vertex A the center of disk D. Hence side AC and the ray
−→
AB are hyperbolic as well

as Euclidean lines. They form the given angle α at vertex A, and can be constructed
immediately.

Next we need to get a⊥, the polar to the side a = BC. Since point C lies on the side
a, the polar C⊥ goes through the polar a⊥. But the polar C⊥ is simply the tangent to
∂D at the ideal point C. Thus we get already one coordinate for point a⊥. We need to
use the given angle β at vertex B to get a second coordinate.

Let σ = α + β + γ be the angle sum and δ = 180◦ − α − β − γ be the defect. The
Euclidean quadrilateral �ABa⊥C has the angles
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Figure 2.15: Two examples for the construction of a triangle from three given angles.

α at vertex A,

90◦ at vertex C,

90◦ + β at vertex B, and hence

δ at vertex a⊥.
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Figure 2.16: Construction of an asymptotic triangle with angles α = 60◦, β = 45◦, γ = 0◦.

Hence the isosceles 	BCa⊥ has two base angles σ
2
. Thus the ray

−−→
CB form an angle σ

2

with the tangent Ca⊥, and an angle δ
2
with the radius CA.

Hence one transfers angle δ
2
to vertex C with one side CA. Now point B lies on the

other side of this angle.

Problem 2.13. Do the construction with given angles α = 60◦, β = 45◦, γ = 0◦.

Proposition 2.3 (SAA Construction of a triangle). In hyperbolic geometry, a
triangle is determined, up to congruence, by giving one side, one adjacent angle, and the
angle opposite to that side. Indeed, for any given angles α, γ with sum α + γ < 180◦,
and segment of length c, there exists such a triangle, unique up to congruence.

I give two variants for a construction.

Explanation of construction variant 1. We choose to put the vertex B, where no angle
is specified, at the center of the Poincaré disk. Let A be any point such that segment
AB has the length c as required. The construction uses the inverse point A′ and the
polar A⊥, too. Next we construct line b through point A, which produces angle α with−→
AB as required. To this end, one transfers angle 90◦−α at vertex A with one side

−−→
AA′.

The intersection of the other leg of this angle with A⊥ yields point b⊥. Now line b is
simply a circular arc with center b⊥ through point A.

The harder part is to get vertex C. Let C∗ be the ideal endpoint of ray
−→
AC such

that we get angle ∠BAC∗ = α as required.

Transfer angle 90◦ + γ to vertex C∗ with one side
−−−→
C∗b⊥. Let a∗ be the other side of

that angle. We have thus produced the given angle γ at vertex C∗, with one side a ray
tangent to b, and ray a∗ the other side. Let σ be the circle around b⊥ through O and
let O∗ be the intersection point of that circle with the ray a∗.

The remaining part of the construction uses a Euclidean reflection by the bisector
of angle ∠Ob⊥O∗. Too, the reflection maps angle γ to vertex C, with one side a ray
tangent to b, and the ray a = CO as other side.
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Answer.

Remark. Here is a slightly different way to get vertex C. One transfers angle γ to vertex

A, with one leg being the tangent to side b, the other leg in the same half plane as
−→
AB.

(Alternatively, transfer angle γ − α with one leg
−→
AB.) Let D be the intersection point

of the second leg with σ, the circle around b⊥ through point O. Finally, one has to draw
a circle around B of Euclidean radius AD. It intersects the arc b in two points C1 and
C2. One of the 	ABCi for i = 1, 2 has angle γ at vertex Ci. (The other one has the
supplementary angle 180◦ − γ, and has not to be taken into account.)

Figure 2.17: Example for the SAA construction of a triangle.

Explanation of construction variant 2. We choose to put the vertex A and the given
angle α at the center O = A of the Poincaré disk. Let B be any point such that segment

AB has the length c as required. Let E be the ideal endpoint of ray
−→
AC =

−→
AE such

that we get angle ∠BAE = α as required, and F be the ideal end of the opposite ray.
The harder part is to get vertex B, to which end we use an equidistance line. By

definition, an equidistance line is the set of all points with same distance from a given
line. Let ε be the equidistance line through vertex B consisting of all points with same
distance from line OE. The line ε is modelled by a circular arc though point B and the
ideal ends E and F . as explained in the section on the Poincaré model.
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We transfer angle γ to vertex O = A with one side
−−→
OE. Let c∗ be the other side of

that angle, and B∗ be its intersection with the equidistance line ε.
The remaining part of the construction uses a hyperbolic reflection by line r, which is

constructed to map B to B∗, and the line FOE to itself. The polar r⊥ is the intersection
of the Euclidean lines BB∗ and OE. Finally vertex C is the reflective image of O. This

is the intersection of the common chord of δD and r with ray
−−→
OE.

Too, the reflection maps angle γ to vertex C, with the sides CO and CB.

Figure 2.18: Variant 2 for the SAA construction. This variant uses an equidistant line and
a hyperbolic reflection by r.

Problem 2.14. We choose α = 40◦ and γ = 29◦. For disk D and point A already given,
do the construction as described above. Report the angle β from your construction.

Remark. The actual value of β does depend to the choice of the hyperbolic distance
s(A,B).

2.5 The altitudes and the orthocenter

Problem 2.15. Read the proof and of the proposition about the altitudes. Provide a
drawing with all relevant entities named consistently.

Proposition 2.4. In hyperbolic geometry, if two altitudes of a triangle intersect, then
all three altitudes intersect in one point.
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Proof. We use the Poincaré disk model of hyperbolic geometry. In the given 	ABC,
let H be the intersection point of the two altitudes dropped from vertices A and C. By
means of a hyperbolic reflection, we can put H = O into the center of the Poincaré disk.
As usual, let a, b, c denote the sides of the triangle opposite to its vertices A,B,C. We
use the polar triangle with vertices a⊥, b⊥, c⊥ polar to sides a, b, c. This is a triangle
in the Euclidean sense. For an acute triangle, it has the Poincaré disk in its interior.
(”swallowing that disk”)

The altitude hA of 	ABC dropped from A passes through the center of the Poincaré
disk. Hence it is a Euclidean straight line. Since hA is perpendicular to the opposite side

a, it passes through the polar point a⊥. Furthermore, line hA =
←→
OA is perpendicular to

A⊥ =
←−→
b⊥c⊥. Similarly, altitude hC passes through c⊥ and is perpendicular to C⊥.

Hence lines hA and hC are the altitudes of the polar triangle 	 a⊥, b⊥, c⊥, too. We
can use the fact, known from Euclidean geometry, that its altitudes intersect in one
point, which is indeed H.

Hence line b⊥H is an altitude of the polar triangle and hence it is perpendicular to
line B⊥. Thus point B lies on line b⊥H, which means that the three points B,H, b⊥ lie
on one straight line. This implies that side b of perpendicular to the altitude hb, which
is the altitude hB of the original triangle, too, and passes through point H.

Remark. The three altitudes of an acute triangle always intersect. For an obtuse triangle,
the altitudes may or may not intersect.

Problem 2.16. Use the Poincaré model to construct a triangle with an orthocenter, but
no circum-center— and another triangle without an orthocenter, but a circum-center.
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Figure 2.19: The three altitudes.
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Figure 2.20: A triangle with an orthocenter, but no circum-center— another triangle with-
out an orthocenter, but a circum-center.
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3 Hyperbolic Geometry in Klein’s Model

3.1 Setup of Klein’s model

The second important model for hyperbolic geometry goes back to Felix Klein. The
reader should recall the basic idea of a model in mathematics, as explained in the
passage General remark about models in mathematics. Again, one uses the Euclidean
plane as ambient underlying reality (”background ontology”). We put into the Euclidean
plane the open unit disk

D = {(x, y) : x2 + y2 < 1}
with the boundary

∂D = {(x, y) : x2 + y2 = 1}
The center of D is denoted by O.

Definition 3.1 (Basic elements of Klein’s model). The points ofD are the "points"
for Klein’s model. The points of ∂D are called "ideal points" or "endpoints". The
ideal points are not points of the hyperbolic plane. Once the hyperbolic distance is
introduced, the points of ∂D turn out to be infinitely far away. Hence we call ∂D the
"circle of infinity". The "lines" for Klein’s model are straight chords.

Poincaré’s and Klein’s model differ, because lines are represented differently, and—
even more importantly—the hyperbolic isometries are given by different types of map-
pings. In Poincaré’s model, the hyperbolic reflections are realized as inversions by circles.
In Klein’s model, the hyperbolic reflections are realized quite differently. Indeed, hyper-
bolic reflections are projective mappings, which leave the circle of infinity ∂D invariant.

The developing Klein’s model based on projective geometry is postponed to the sub-
section about the projective nature of Klein’s model. I shall now use a rather simple-
minded different approach: there exists an isomorphism which is a translation from
Poincaré’s to Klein’s model. Because we already know that Poincaré’s model is a con-
sistent model for hyperbolic geometry, the translation implies that Klein’s model is a
consistent model for hyperbolic geometry, too.

Proposition 3.1 (The mapping from Poincaré’s to Klein’s model). The point P
in Poincaré’s model is mapped to a point K in Klein’s model by requiring that the rays−→
OP =

−−→
OK are identical and

(3.1) |OK| = 2 |OP |
1 + |OP | 2

The mapping (3.1) keeps the ideal endpoints fixed, and it takes a circular arc l ⊥ ∂D
to the corresponding chord with the same ideal endpoints. Indeed, the mapping (3.1) is
a translation of Poincaré’s to Klein’s model , since the points and lines of Poincaré’s
model, are mapped to points and lines of Klein’s model, preserving incidence.
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Reason. As shown in the last proposition of the section on Poincaré’s model, point K is

the intersection of ray
−→
OP with the chord between the ideal endpoints of any arc l ⊥ ∂D

through point P . This chord k is a hyperbolic line in Klein’s model. Clearly all points
of arc l are mapped to points of chord k by the same construction, and hence are all
given by mapping (3.1).

For the Poincaré disk model, it has been very useful to define polar elements outside
the closed disk D. We shall use polar elements for Klein’s model, too. As a first step,
we define and construct the inverse point P ′ of any given point P , in the way explained
in the section about the Euclidean geometry of circles II.

Definition 3.2 (The polar elements for Klein’s model). The polar l⊥ of a line l
is the intersection point of the tangents to ∂D at its ideal endpoints.

The Klein polar or projective polar K⊥ of a point K is perpendicular to the ray
−−→
OK

at the inverse point K ′.

A few clarifying remarks are in place: For both the Poincaré and the Klein model,
the polar of a line is the intersection point of the tangents to the circle of infinity at the
ideal ends.

But the mapping from the points to their polar elements are different for the two
models. For clarification, I use the terms Poincaré polar and projective polar. 56 The
difference occurs because the points are mapped from Poincaré’s to Klein’s via the
isomorphism (3.1), but the polar elements are the same for both models, hence the
mappings from points to their polar are different for the two models.

Proposition 3.2. The Poincaré polar of a point P is the perpendicular bisector of the
segment PP ′ between the given point and its inverse. The projective polar of a point K

is the perpendicular to the ray
−−→
OK at the inverse point K ′.

The following diagram for the mapping (3.1), the Poincaré polar and the projective
polar is commutative:

point P of Poincaré’s model
isomorphism (3.1)−−−−−−−−−−→ point K of Klein’s model

perpendicular bisector of PP ′
⏐
⏐
�

⏐
⏐
�perpendicular to OK at K′

Poincaré’s polar P⊥ projective polar Kproj⊥

Proof. By item (b) from the last proposition from the section on the Poincaré model,
the inverse point K ′ is the midpoint of the segment PP ′ between P and its inverse point
P ′. Hence the Poincaré polar P⊥ is identical to the Klein polar Kproj⊥.

56The simple term polar is common usage for the projective polar. It refers to the pole and polar
relation studied in projective geometry. The term is also used in common software packages for geom-
etry. On the other hand, Goodman-Strauss uses the term polar for the Poincaré polar, as I do in the
sections on Poincaré’s model.
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