
CYCLES & VARS.  

This Lecture is based Blanchard’s lecture : 

http://ocw.mit.edu/courses/economics/14-452-macroeconomic-theory-ii-spring-2007/lecture-

notes/slides01.pdf 

It forms part of the masters course at MIT in the USA. 

 

At an important part of applied macroeconomics (as opposed to theoretical macroeconometrics) 

examines the following sort of issues: 

 (i) How long do booms/recessions last?  

(ii) How do Consumption, and Investment move with output?  

(iii) How does nominal/real money stock move with output?  

(iv) How do nominal/real interest rates move with output?  

(v) How do real wages move with output?  

 

But before we can look for patterns in data over time we need to assume/establish that the variables 

are “covariance stationarity”. What do we mean by this? 

 

Let Y
t 
be a random variable. Then, Y

t 
is covariance stationary [more often we just say stationary] iff: 

E[Y
t
] = μ for all t  - the variable has a mean which does not change over time, e.g. inflation yes 

possibly stationary as it has a mean, the consumer price index no, it has no mean which is constant 

over time. Note E[.] denotes the expected value of what lies inside [.]. Think of it as an average value. 

The subscript t denotes the time period.  

E[(Yt – μ) (Yt-k – μ)] = g
k  

for all t.  The covariance between two values of Y k periods apart also does 

not change. Actually tests of stationarity tend to revolve around the following. Estimate the 

relationship:  Yt = ρYt-1  

If ρ<1 [tend not to consider negative values] we say its stationary. That’s not exactly the test, but to do 

more takes us into econometrics. 

 

If a variable(s) is stationary, then can actually learn/estimate the variance, the stochastic process [what 

drives the data], the cross-correlations [between one variable over time, or between two different 

variables].  If it is not stationary, then it becomes more complex to analyse.  

 

Is covariance stationarity a reasonable assumption? Sometimes not. Great Depression. 

Hyperinflations. Transition in Eastern Europe. Emerging market economies: Sudden stops. The figure 

on slide 9 from the MIT presentation suggests there have been occasional periods when it is unlikely 

http://ocw.mit.edu/courses/economics/14-452-macroeconomic-theory-ii-spring-2007/lecture-notes/slides01.pdf
http://ocw.mit.edu/courses/economics/14-452-macroeconomic-theory-ii-spring-2007/lecture-notes/slides01.pdf


that what we see comes from a stationary process [i.e. the variable is (covariance) stationary, note we 

generally omit the word covariance and just refer to stationarity. It is a critical concept in modern 

macroeconomics]. 

 

NOW IF a series can be established as stationary. Then the Wold decomposition theorem becomes 

valid. This says that the variable can be represented as an infinite moving average representation. Big 

words, but simple really; the series can be represented as an infinite average of current and past 

random error terms [what economists often call ‘shocks’]. That’s great, but how to estimate an infinite 

series? Well, infinite MAs obviously cannot be estimated, But they can be approximated quite well by 

an AR(n) process. For example an AR(2) [autoregressive process of order 2]: 

 

Yt  = ρ1Yit-1 + ρ2Y2t-2 + εt        (1) 

Similarly if we have say three variables (all stationary, e.g. inflation growth and (hopefully stationary) 

unemployment). Then we can estimate the system as a VAR (vector auto regression): 

yt = A1yt-1 + A2yt-2 + ……… + εt       (2) 

where 
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Inserting into (2) we get: 
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Reading across the first row: 

Y1t =    
 y1t-1 +    

 y2t-1      
 y3t-1 +    

 y1t-2 +    
 y2t-2      

 y3t-2 + ε1t  (3) 

and similarly for the other two rows. Equation is fairly simple really. It links the current value of y1 to 

values of all three variables in t-1 (the previous period, say last year) and all three variables in t-2 

(say two years ago). εt ? That is simply a random error term, which exists because the lagged values 

of these three variables are not going to fully explain y1t. Similarly for the other two variables, e.g.:  

Y2t =    
 y1t-1 +    

 y2t-1      
 y3t-1 +    

 y1t-2 +    
 y2t-2      

 y3t-2 + ε2t  (3) 

 

So estimating a VAR is pretty simple really. First establish the variables are stationary. Next do the 

estimations. But why would it be valid? What would it tell us? Well before we answer this, consider 

the following system of equations. This is a structural relationship linking current values of y1 to 

AR(2) because the lag goes back 2 periods 



current values of y2 and y3. y1 could be inflation, y2 unemployment and y3 money supply growth 

(hopefully all are stationary). Economic theory underlies these relationships.  

Y1t =    y2t      y3t +    y1t-1 +    y2t-1      y3t-1 + u1t  (4i) 

Y2t =    y1t      y3t +    y1t-1 +    y2t-1      y3t-1 + u2t  (4ii) 

Y3t =    y1t      y2t +    y1t-1 +    y2t-1      y3t-1 + u3t  (4iii) 

Now we can rewrite this as: 

yt = Cyt + Ayt-1 + ut       (5) 

which can then be rewritten as  

Iyt = Cyt + Ayt-1 + ut       (6) 

where I is the identity matrix. The key property of an identity matrix is that when it multiplies 

another matrix/vector it leaves it unchanged [i.e. Iyt = yt]. What does it look like? In this case: 

[
   
   
   

] 

OK now rearrange (6): 

Iyt - Cyt = Ayt-1 + ut       (7) 

[I-C]yt = Ayt-1 + ut       (8) 

Just one more step 

[I-C]-1[I-C]yt = [I-C]-1Ayt-1 + [I-C]-1ut     (9) 

[I-C]-1 is called the inverse matrix of [I-C]. Just as 1/6 is the inverse of 6. Multiply the two together 

you get 1; similarly [I-C]-1[I-C]=I. This leaves us with: 

yt = [I-C]-1Ayt-1 + [I-C]-1ut       (7) 

Now those of you who know matrix algebra will find this easy. The rest will find it difficult. The key 

point is that any structural relationship linking variables to current and past values as in (5) can be 

transformed into a VAR. AND VICE VERSA. Having estimated a VAR we should be able to obtain 

estimates of the underlying structural equations and the underlying error terms or shocks [the ut’s]. 

But in there we have a problem, for a VAR can be traced back to several different structural 

relationships. In order to proceed further to get to a unique structural relationship we need to 

provide more information in the form of ‘identification restrictions’. These could for example be that 

c31 in 4iii is zero, i.e. y1t has no impact on y3t. Alternatively it may be that the long term impact of a 

shock in y1 on y3 is zero. The shock in y1 is represented by u1t the error term in the structural 

equation. Having estimated a structural VAR it is common place to estimate the impact of a shock in 

say y1 in period t [say inflation] on both inflation itself and the other variables. We will be looking at 

this in another lecture.      



Below we present a very simply VAR. It estimates the following equations: 

D_lrgrossinvt =0.278 D_lrgrossinvt-1 + 0.576 D_lrconsumpt-1 +0.00071 

D_lrconsumpt =0.0661 D_lrgrossinvt-1 + 0.0613 D_lrconsumpt-1 +0.00772 

Now D_.. stands for the change in or the first difference. Lrgrossinv is the log of real gross 

investment. Put both together and the change in the log of real gross investment is simply its growth 

rate. The other variable is the growth of real consumption.  

 

Impulse Response Functions 

These trace the impact of shocks to the system. Let us assume that in period τ There is a one unit 

shock to investment. How will the system respond? Well in τ+1 we have 

D_lrgrossinv τ+1 =0.278 x 1 + 0.576 x 0 =0.278 

D_lrconsump τ+1=0.0661 x 1 + 0.0613 x 0 = 0.061 

Going forward we have: 

D_lrgrossinv τ+2 =0.278 D_lrgrossinv τ+1 + 0.576 D_lrconsump τ+1  

D_lrconsump τ+2 =0.0661 D_lrgrossinv τ+1 + 0.0613 D_lrconsump τ+1 

OR 

D_lrgrossinv τ+2 =0.278 0.278 + 0.576 0.061  

D_lrconsump τ+2 =0.0661 0.278 + 0.0613 0.061 

And so on as we move further forward [Note we are missing out the constant terms as these are 

there regardless of whether there is a shock or not.]. These are done in the Excel file: 

 

                                                                              

       _cons     .0077298   .0008189     9.44   0.000     .0061248    .0093348

              

         LD.      .061333   .0863456     0.71   0.478    -.1079013    .2305674

   lrconsump  

              

         LD.     .0660611   .0306599     2.15   0.031     .0059688    .1261534

  lrgrossinv  

D_lrconsump   

                                                                              

       _cons     .0007103   .0021455     0.33   0.741    -.0034948    .0049155

              

         LD.     .5756131   .2262345     2.54   0.011     .1322017    1.019025

   lrconsump  

              

         LD.     .2784748   .0803322     3.47   0.001     .1210267    .4359229

  lrgrossinv  

D_lrgrossinv  

                                                                              

                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                                

D_lrconsump           3     .006667   0.0516   10.12045   0.0063

D_lrgrossinv          3     .017469   0.1838   41.88835   0.0000

                                                                

Equation           Parms      RMSE     R-sq      chi2     P>chi2

Det(Sigma_ml)  =  9.40e-09                         SBIC            = -12.63862

FPE            =  1.00e-08                         HQIC            = -12.70051

Log likelihood =  1191.069                         AIC             = -12.74267

Sample:  1959q3 - 2005q4                           No. of obs      =       186

Vector autoregression

. varbasic D.lrgrossinv D.lrconsump if tin(,2005q4), lags(1) irf



 

Investment 
equation Consumption Equation 

 

Investment 
equation 

Consumption 
Equation 

Shocks: 1 0 
 

Shocks: 0 1 

1 0.2784748 0.0660611 
 

1 0.575613 0.061333 

2 0.115573849 0.022448077 
 

2 0.195598 0.041787 

3 0.045105812 0.009011743 
 

3 0.078522 0.015484 

4 0.017748109 0.003532457 
 

4 0.03078 0.006137 

5 0.00697573 0.001389116 
 

5 0.012104 0.00241 

6 0.002742158 0.000546023 
 

6 0.004758 0.000947 

7 0.00107792 0.000214639 
 

7 0.00187 0.000372 

8 0.000423723 8.4373E-05 
 

8 0.000735 0.000146 

9 0.000166562 3.31664E-05 
 

9 0.000289 5.75E-05 
 

And plotted for the impact of an investment shock on investment: 

 

Most econometric package programs will plot these out.   
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Let us finish this on VARs by looking at a more complex model with one more lag and real GDP also 

added: 

 

 

 

                                                                              

       _cons     .0038423   .0012301     3.12   0.002     .0014314    .0062533

              

        L2D.    -.1141997   .1036802    -1.10   0.271    -.3174091    .0890097

         LD.    -.2095935   .1058508    -1.98   0.048    -.4170572   -.0021298

       lrgdp  

              

        L2D.     .2374275   .1132738     2.10   0.036     .0154149      .45944

         LD.     .4077815   .1128022     3.62   0.000     .1866933    .6288696

   lrconsump  

              

        L2D.      .043157   .0432889     1.00   0.319    -.0416878    .1280017

         LD.     .1239506   .0431482     2.87   0.004     .0393818    .2085195

  lrgrossinv  

D_lrgdp       

                                                                              

       _cons     .0058867    .001048     5.62   0.000     .0038326    .0079407

              

        L2D.     .1113505   .0883304     1.26   0.207    -.0617738    .2844748

         LD.     .1887531   .0901796     2.09   0.036     .0120043    .3655018

       lrgdp  

              

        L2D.     .1113313   .0965036     1.15   0.249    -.0778123     .300475

         LD.    -.0328597   .0961018    -0.34   0.732    -.2212158    .1554964

   lrconsump  

              

        L2D.    -.0448372     .03688    -1.22   0.224    -.1171207    .0274463

         LD.     .0106853   .0367601     0.29   0.771    -.0613631    .0827338

  lrgrossinv  

D_lrconsump   

                                                                              

       _cons    -.0009508   .0027881    -0.34   0.733    -.0064153    .0045138

              

        L2D.    -.1210883   .2349968    -0.52   0.606    -.5816736    .3394969

         LD.     .1051089   .2399165     0.44   0.661    -.3651189    .5753367

       lrgdp  

              

        L2D.     .1771756   .2567412     0.69   0.490     -.326028    .6803791

         LD.     .5667047   .2556723     2.22   0.027     .0655963    1.067813

   lrconsump  

              

        L2D.     .1271815   .0981167     1.30   0.195    -.0651237    .3194868

         LD.     .1948761   .0977977     1.99   0.046     .0031962    .3865561

  lrgrossinv  

D_lrgrossinv  

                                                                              

                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                                

D_lrgdp               7     .007722   0.2157   50.88832   0.0000

D_lrconsump           7     .006579   0.0994   20.42492   0.0023

D_lrgrossinv          7     .017503   0.2030   47.12655   0.0000

                                                                

Equation           Parms      RMSE     R-sq      chi2     P>chi2

Det(Sigma_ml)  =  2.28e-13                         SBIC            = -20.00385

FPE            =  2.86e-13                         HQIC            = -20.22125

Log likelihood =  1905.169                         AIC             =  -20.3694

Sample:  1959q4 - 2005q4                           No. of obs      =       185

Vector autoregression

. varbasic D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4),irf
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How to interpret this graph? Take consumption, the impact of a consumption shock on consumption 

quickly does out, but then recovers again before moving to zero. We can see too the impacts on GDP 

and investment. Finally we note in the following slides the lecture talks of detrending data. It is easy 

to fit a nonlinear trend to the data. But as in slide 18 this is often done using the Hodrick Prescott 

(HP) filter. Many econometric package programs have this as a facility. When using it you have to 

specify a value of   λ. We will illustrate by looking at the NASDAQ index: 

 

 

Programming Appendix 

use http://fmwww.bc.edu/cfb/data/usmacro1 

varbasic D.lrgrossinv D.lrconsump if tin(,2005q4) lags(1),irf 

varbasic D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4),irf 

matrix lr = (., 0\0, .) 

svar D.lrmbase D.lrgdp, lags(4) lreq(lr) nolog 

0
5
0

1
0

0
1
5

0
2
0

0

N
A

S
D

A
Q

 C
O

M
P

O
S

IT
E

1960 1970 1980 1990 2000 2010
year

2008 economic crisis>

2000 dot com bubble>

-5
0

0
5
0

1
0

0

F
ilt

e
re

d
 s

e
ri

e
s

1960 1970 1980 1990 2000 2010
Year

Lambda=1300 Lambda=10

Notes: Derived from use of Hodrick Prescott filter 
Lambda=10 series sees much less of a cycle than the other

Figure: Identifying the Cycle in the NASDAQ

http://fmwww.bc.edu/cfb/data/usmacro1


http://fmwww.bc.edu/EC-C/S2013/823/EC823.S2013.nn10.slides.pdf 

matrix lr = (.,., 0\0,. ,.\0,.,0) 

svar D.lrgrossinv D.lrconsump D.lrgdp if tin(,2005q4) , lags(23) lreq(lr) nolog 

tsfilter hp NASDAQ_hp = NASDAQ 

tsfilter hp NASDAQ_hp100 = NASDAQindex,sm(100) 

line NASDAQ_hp100 year 

tsfilter hp NASDAQ_hp1300 = NASDAQindex,sm(1300) 

line NASDAQ_hp1300 year 

tsfilter hp NASDAQ_hp10 = NASDAQindex,sm(10) 

label var  trndyr  "Year" 

label var  NASDAQ_hp1300  "Lambda=1300" 

label var  NASDAQ_hp10  "Lambda=10" 

twoway line NASDAQ_hp1300 year, lwidth(medthick) xtitle(Year) ytitle(Filtered series, margin(0 3 

0 0)) title(Figure: Identifying the Cycle in the NASDAQ) note("Notes: Derived from use of Hodrick 

Prescott filter " "Lambda=10 series sees much less of a cycle than the other") xline(2008) text(94 

2008 "2008 economic crisis>",place(w)) text(70 2000 "2000 dot com bubble>",place(w)) || line 

NASDAQ_hp10 year 
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