CYCLES \& VARS.

This Lecture is based Blanchard's lecture :
http://ocw.mit.edu/courses/economics/14-452-macroeconomic-theory-ii-spring-2007/lecturenotes/slides01.pdf

It forms part of the masters course at MIT in the USA.

At an important part of applied macroeconomics (as opposed to theoretical macroeconometrics) examines the following sort of issues:
(i) How long do booms/recessions last?
(ii) How do Consumption, and Investment move with output?
(iii) How does nominal/real money stock move with output?
(iv) How do nominal/real interest rates move with output?
(v) How do real wages move with output?

But before we can look for patterns in data over time we need to assume/establish that the variables are "covariance stationarity". What do we mean by this?

Let Y_{t} be a random variable. Then, Y_{t} is covariance stationary [more often we just say stationary] iff: $\mathrm{E}\left[\mathrm{Y}_{\mathrm{t}}\right]=\mu$ for all t - the variable has a mean which does not change over time, e.g. inflation yes possibly stationary as it has a mean, the consumer price index no, it has no mean which is constant over time. Note E[.] denotes the expected value of what lies inside [.]. Think of it as an average value. The subscript t denotes the time period.
$\mathrm{E}\left[\left(\mathrm{Y}_{\mathrm{t}}-\mu\right)\left(\mathrm{Y}_{\mathrm{t}-\mathrm{k}}-\mu\right)\right]=\mathrm{g}_{\mathrm{k}}$ for all t . The covariance between two values of Y k periods apart also does not change. Actually tests of stationarity tend to revolve around the following. Estimate the relationship: $Y_{t}=\rho Y_{t-1}$

If $\rho<1$ [tend not to consider negative values] we say its stationary. That's not exactly the test, but to do more takes us into econometrics.

If a variable(s) is stationary, then can actually learn/estimate the variance, the stochastic process [what drives the data], the cross-correlations [between one variable over time, or between two different variables]. If it is not stationary, then it becomes more complex to analyse.

Is covariance stationarity a reasonable assumption? Sometimes not. Great Depression. Hyperinflations. Transition in Eastern Europe. Emerging market economies: Sudden stops. The figure on slide 9 from the MIT presentation suggests there have been occasional periods when it is unlikely
that what we see comes from a stationary process [i.e. the variable is (covariance) stationary, note we generally omit the word covariance and just refer to stationarity. It is a critical concept in modern macroeconomics].

NOW IF a series can be established as stationary. Then the Wold decomposition theorem becomes valid. This says that the variable can be represented as an infinite moving average representation. Big words, but simple really; the series can be represented as an infinite average of current and past random error terms [what economists often call 'shocks']. That's great, but how to estimate an infinite series? Well, infinite MAs obviously cannot be estimated, But they can be approximated quite well by an $\operatorname{AR}(\mathrm{n})$ process. For example an $\operatorname{AR}(2)$ [autoregressive process of order 2]:
$\mathrm{Y}_{\mathrm{t}}=\rho_{1} \mathrm{Y}_{\mathrm{it}-1}+\rho_{2} \mathrm{Y}_{2 \mathrm{t}-2+\varepsilon_{\mathrm{t}} \quad \operatorname{AR}(2) \text { because the lag goes back } 2 \text { periods } .}$
Similarly if we have say three variables (all stationary, e.g. inflation growth and (hopefully stationary) unemployment). Then we can estimate the system as a VAR (vector auto regression):
$\mathrm{y}_{\mathrm{t}}=\mathrm{A} 1 \mathrm{y}_{\mathrm{t}-1}+\mathrm{A} 2 \mathrm{y}_{\mathrm{t}-2}+\ldots \ldots \ldots . .+\varepsilon_{\mathrm{t}}$
where
$\mathrm{A} 1=\left[\begin{array}{lll}a_{11}^{1} & a_{12}^{1} & a_{13}^{1} \\ a_{21}^{1} & a_{22}^{1} & a_{23}^{1} \\ a_{31}^{1} & a_{32}^{1} & a_{33}^{1}\end{array}\right] \quad \mathrm{y}_{\mathrm{t}}=\left[\begin{array}{l}y 1 t \\ y 2 t \\ y 3 t\end{array}\right]$ and $\mathrm{A} 2=\left[\begin{array}{lll}a_{11}^{2} & a_{12}^{2} & a_{13}^{2} \\ a_{21}^{2} & a_{22}^{2} & a_{23}^{2} \\ a_{31}^{2} & a_{32}^{2} & a_{33}^{2}\end{array}\right]$ and $\varepsilon_{\mathrm{t}}=\left[\begin{array}{c}\varepsilon 1 t \\ \varepsilon 2 t \\ \varepsilon 3 t\end{array}\right]$
Inserting into (2) we get:

$$
\left[\begin{array}{c}
y 1 t \\
y 2 t \\
y 3 t
\end{array}\right]=\left[\begin{array}{lll}
a_{11}^{1} & a_{12}^{1} & a_{13}^{1} \\
a_{21}^{1} & a_{22}^{1} & a_{23}^{1} \\
a_{31}^{1} & a_{32}^{1} & a_{33}^{1}
\end{array}\right]\left[\begin{array}{c}
y 1 t-1 \\
y 2 t-1 \\
y 3 t-1
\end{array}\right]+\left[\begin{array}{ccc}
a_{11}^{2} & a_{12}^{2} & a_{13}^{2} \\
a_{21}^{2} & a_{22}^{2} & a_{23}^{2} \\
a_{31}^{2} & a_{32}^{2} & a_{33}^{2}
\end{array}\right]\left[\begin{array}{l}
y 1 t-2 \\
y 2 t-2 \\
y 3 t-2
\end{array}\right]+\left[\begin{array}{c}
\varepsilon 1 t \\
\varepsilon 2 t \\
\varepsilon 3 t
\end{array}\right]
$$

Reading across the first row:
$\mathrm{Y}_{1 \mathrm{t}}=a_{11}^{1} \mathrm{y}_{1 \mathrm{t}-1}+a_{12}^{1} \mathrm{y}_{2 \mathrm{tt}-1}+a_{13}^{1} \mathrm{y}_{3 \mathrm{t}-1}+a_{11}^{2} \mathrm{y}_{1 \mathrm{t}-2}+a_{12}^{2} \mathrm{y}_{2 t-2}+a_{13}^{2} \mathrm{y}_{3 \mathrm{t}-2}+\varepsilon_{1 \mathrm{t}}$
and similarly for the other two rows. Equation is fairly simple really. It links the current value of y_{1} to values of all three variables in $\mathrm{t}-1$ (the previous period, say last year) and all three variables in $\mathrm{t}-2$ (say two years ago). ε_{t} ? That is simply a random error term, which exists because the lagged values of these three variables are not going to fully explain $\mathrm{y}_{1 \mathrm{t}}$. Similarly for the other two variables, e.g.:
$\mathrm{Y}_{2 \mathrm{t}}=a_{21}^{1} \mathrm{y}_{1 \mathrm{t}-1}+a_{22}^{1} \mathrm{y}_{2 t-1}+a_{23}^{1} \mathrm{y}_{3 \mathrm{t}-1}+a_{21}^{2} \mathrm{y}_{1 t-2}+a_{22}^{2} \mathrm{y}_{2 t-2}+a_{23}^{2} \mathrm{y}_{3 t-2}+\varepsilon_{2 \mathrm{t}}$

So estimating a VAR is pretty simple really. First establish the variables are stationary. Next do the estimations. But why would it be valid? What would it tell us? Well before we answer this, consider the following system of equations. This is a structural relationship linking current values of y_{1} to
current values of y_{2} and y_{3}. y_{1} could be inflation, y_{2} unemployment and y_{3} money supply growth (hopefully all are stationary). Economic theory underlies these relationships.
$\mathrm{Y}_{1 \mathrm{t}}=c_{12} \mathrm{Y}_{2 \mathrm{t}}+c_{13} \mathrm{Y}_{3 \mathrm{t}}+a_{11} \mathrm{y}_{1 \mathrm{t}-1}+a_{12} \mathrm{y}_{2 \mathrm{t}-1}+a_{13} \mathrm{Y}_{3 \mathrm{t}-1}+\mathrm{u}_{1 \mathrm{t}}$
$\mathrm{Y}_{2 \mathrm{t}}=c_{21} \mathrm{y}_{1 \mathrm{t}}+c_{23} \mathrm{y}_{3 \mathrm{t}}+a_{21} \mathrm{y}_{1 \mathrm{t}-1}+a_{22} \mathrm{y}_{2 \mathrm{t}-1}+a_{23} \mathrm{y}_{3 \mathrm{t}-1}+\mathrm{u}_{2 \mathrm{t}}$

Now we can rewrite this as:
$y_{t}=C y_{t}+A y_{t-1}+u_{t}$
which can then be rewritten as
$\mathrm{I} \mathrm{y}_{\mathrm{t}}=\mathrm{C} \mathrm{y}_{\mathrm{t}}+\mathrm{A} \mathrm{y}_{\mathrm{t}-1}+\mathrm{u}_{\mathrm{t}}$
where I is the identity matrix. The key property of an identity matrix is that when it multiplies another matrix/vector it leaves it unchanged [i.e. $\mathrm{ly}_{\mathrm{t}}=\mathrm{y}_{\mathrm{t}}$]. What does it look like? In this case:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

OK now rearrange (6):
$1 y_{t}-C y_{t}=A y_{t-1}+u_{t}$
$[I-C] y_{t}=A y_{t-1}+u_{t}$
Just one more step
$[I-C]^{-1}[I-C] y_{t}=[I-C]^{-1} A y_{t-1}+[I-C]^{-1} u_{t}$
$[I-C]^{-1}$ is called the inverse matrix of $[I-C]$. Just as $1 / 6$ is the inverse of 6 . Multiply the two together you get 1 ; similarly $[I-C]^{-1}[I-C]=I$. This leaves us with:
$y_{t}=[I-C]^{-1} A y_{t-1}+[I-C]^{-1} u_{t}$
Now those of you who know matrix algebra will find this easy. The rest will find it difficult. The key point is that any structural relationship linking variables to current and past values as in (5) can be transformed into a VAR. AND VICE VERSA. Having estimated a VAR we should be able to obtain estimates of the underlying structural equations and the underlying error terms or shocks [the u_{t} 's]. But in there we have a problem, for a VAR can be traced back to several different structural relationships. In order to proceed further to get to a unique structural relationship we need to provide more information in the form of 'identification restrictions'. These could for example be that c_{31} in 4 iii is zero, i.e. $\mathrm{y}_{1 \mathrm{t}}$ has no impact on $\mathrm{y}_{3 \mathrm{t}}$. Alternatively it may be that the long term impact of a shock in y_{1} on y_{3} is zero. The shock in y_{1} is represented by $u_{1 t}$ the error term in the structural equation. Having estimated a structural VAR it is common place to estimate the impact of a shock in say y_{1} in period t [say inflation] on both inflation itself and the other variables. We will be looking at this in another lecture.

Below we present a very simply VAR. It estimates the following equations:
$D_{_}$Irgrossinv ${ }_{t}=0.278$ D_Irgrossinv $_{t-1}+0.576$ D_Irconsump $_{t-1}+0.00071$
D_{-}Irconsump ${ }_{t}=0.0661$ D_Irgrossinv $_{t-1}+0.0613$ D_Irconsump $_{t-1}+0.00772$
Now D_.. stands for the change in or the first difference. Lrgrossinv is the log of real gross investment. Put both together and the change in the log of real gross investment is simply its growth rate. The other variable is the growth of real consumption.

```
varbasic D.1rgrossinv D.1rconsump if tin(,2005q4), lags(1) irf
```


Impulse Response Functions

These trace the impact of shocks to the system. Let us assume that in period τ There is a one unit shock to investment. How will the system respond? Well in $\tau+1$ we have
D_{-}Irgrossinv ${ }_{\tau+1}=0.278 \times 1+0.576 \times 0=0.278$
D_Irconsump $_{\tau+1}=0.0661 \times 1+0.0613 \times 0=0.061$
Going forward we have:
$D_{-} \operatorname{lrgrossin} v_{\tau+2}=0.278$ D_Irgrossinv $_{\tau+1}+0.576$ D_Irconsump $_{\tau+1}$
$D_{\text {_Irconsump }}^{\tau+2} 1=0.0661$ D_Irgrossinv $_{\tau+1}+0.0613$ D_Irconsump $_{\tau+1}$

OR
D_{-}Irgrossinv ${ }_{\tau+2}=0.2780 .278+0.5760 .061$

D_Irconsump $_{\tau+2}=0.06610 .278+0.06130 .061$
And so on as we move further forward [Note we are missing out the constant terms as these are there regardless of whether there is a shock or not.]. These are done in the Excel file:

	Investment equation		Consumption Equation		Investment equation	
Shocks:	Consumption Equation					
1	0.2784748	0	Shocks:	0	1	
2	0.115573849	0.0660611	1	0.575613	0.061333	
3	0.045105812	0.022448077	2	0.195598	0.041787	
4	0.017748109	0.009011743	3	0.078522	0.015484	
5	0.00697573	0.003532457	4	0.03078	0.006137	
6	0.002742158	0.001389116	5	0.012104	0.00241	
7	0.00107792	0.000546023	6	0.004758	0.000947	
8	0.000423723	0.000214639	7	0.00187	0.000372	
9	0.000166562	$8.4373 \mathrm{E}-05$	8	0.000735	0.000146	
		$3.31664 \mathrm{E}-05$	9	0.000289	$5.75 \mathrm{E}-05$	

And plotted for the impact of an investment shock on investment:

Most econometric package programs will plot these out.

Graphs by irfname, impulse variable, and response variable

Let us finish this on VARs by looking at a more complex model with one more lag and real GDP also added:

vector autoregression							
Sample: 19590	- $2005 \mathrm{q}^{4}$			No.	of obs =	$=185$	
Log likelihood	= 1905.169			AIC		$=-20.3694$	
Fpe	$=2.86 e-13$			HQIC		$=-20.22125$	
Det (Sigma_ml)	$=2.28 e-13$			SBIC		$=-20.00385$	
Equation	Parms	RMSE	R-sq	chi2	P>Chi2		
D_1rgrossinv	7	. 017503	0.2030	47.12655	0.0000		
D_1rconsump	7	. 006579	0.0994	20.42492	0.0023		
D_1rgdp	7	. 007722	0.2157	50.88832	0.0000		
	Coef.	Std. Err.	z	P>\| 2		[958 Conf.	. Interval]
$\begin{array}{r} \text { D_1rgrossinv } \\ \text { lrgrossinv } \end{array}$							
ID.	. 1948761	. 0977977	1.99	0.046	. 0031962	. 3865561	
L22.	. 1271815	. 0981167	1.30	0.195	-. 0651237	. 3194868	
1 rconsump							
ID.	. 5667047	. 2556723	2.22	0.027	. 0655963	1.067813	
${ }_{\text {L2 } 2 \mathrm{D}}$.	. 1771756	. 2567412	0.69	0.490	-. 326028	. 6803791	
1 rgdp							
LD.	. 1051089	. 2399165	0.44	0.661	-. 3651189	. 5753367	
L2D.	-. 1210883	. 2349968	-0.52	0.606	-. 5816736	. 3394969	
_cons	$-.0009508$. 0027881	-0.34	0.733	-.0064153	. 0045138	
D_Irconsump lrgrossinv							
ID.	. 0106853	. 0367601	0.29	0.771	-. 0613631	. 0827338	
L2D.	-. 0448372	. 03688	-1.22	0.224	-. 1171207	. 0274463	
1 rconsump							
id.	-. 0328597	. 0961018	-0.34	0.732	-. 2212158	. 1554964	
L2D.	. 1113313	. 0965036	1.15	0.249	-. 0778123	. 300475	
1 rgdp							
ID.	. 1887531	. 0901796	2.09	0.036	. 0120043	. 3655018	
L2D.	. 1113505	. 0883304	1.26	0.207	-. 0617738	. 2844748	
_cons	. 0058867	. 001048	5.62	0.000	. 0038326	. 0079407	
D_1rgdp							
1 rgrossinv							
ID.	. 1239506	. 0431482	2.87	0.004	. 0393818	. 2085195	
L22.	. 043157	. 0432889	1.00	0.319	-. 0416878	. 1280017	
1 rconsump							
LD.	. 4077815	. 1128022	3.62	0.000	. 1866933	. 6288696	
${ }^{\text {L22 }}$.	. 2374275	. 1132738	2.10	0.036	. 0154149	. 45944	
1 ggdp							
LD.	-. 2095935	. 1058508	-1.98	0.048	-. 4170572	-. 0021298	
${ }^{\text {L2, }}$ D.	-. 1141997	. 1036802	-1.10	0.271	-. 3174091	. 0890097	
-cons	. 0038423	. 0012301	3.12	0.002	. 0014314	. 0062533	

How to interpret this graph? Take consumption, the impact of a consumption shock on consumption quickly does out, but then recovers again before moving to zero. We can see too the impacts on GDP and investment. Finally we note in the following slides the lecture talks of detrending data. It is easy to fit a nonlinear trend to the data. But as in slide 18 this is often done using the Hodrick Prescott (HP) filter. Many econometric package programs have this as a facility. When using it you have to specify a value of λ. We will illustrate by looking at the NASDAQ index:

Figure: Identifying the Cycle in the NASDAQ

Notes: Derived from use of Hodrick Prescott filter
Notes: Derived from use of Hodrick Prescott filter
Lambda $=10$ series sees much less of a cycle than the other

Programming Appendix

use http://fmwww.bc.edu/cfb/data/usmacro1
varbasic D.lrgrossinv D.lrconsump if $\operatorname{tin}(, 2005 q 4)$ lags(1),irf
varbasic D.lrgrossinv D.lrconsump D.lrgdp if $\operatorname{tin}(, 2005 q 4)$,irf
matrix $\operatorname{lr}=(., 0 \backslash 0,$.
svar D.lrmbase D.lrgdp, lags(4) lreq(lr) nolog
http://fmwww.bc.edu/EC-C/S2013/823/EC823.S2013.nn10.slides.pdf
matrix $\operatorname{lr}=(., ., 0 \backslash 0, ., . \mid 0, ., 0)$
svar D.lrgrossinv D.lrconsump D.lrgdp if $\operatorname{tin}(, 2005 q 4)$, lags(23) lreq(lr) nolog
tsfilter hp NASDAQ_hp = NASDAQ
tsfilter hp NASDAQ_hp100 = NASDAQindex,sm(100)
line NASDAQ_hp100 year
tsfilter hp NASDAQ_hp1300 = NASDAQindex,sm(1300)
line NASDAQ_hp1300 year
tsfilter hp NASDAQ_hp10 = NASDAQindex,sm(10)
label var trndyr "Year"
label var NASDAQ_hp1300 "Lambda=1300"
label var NASDAQ_hp10 "Lambda=10"
twoway line NASDAQ_hp1300 year, lwidth(medthick) xtitle(Year) ytitle(Filtered series, margin(0 3 $00)$) title(Figure: Identifying the Cycle in the NASDAQ) note("Notes: Derived from use of Hodrick Prescott filter " "Lambda= 10 series sees much less of a cycle than the other") xline(2008) text(94 2008 "2008 economic crisis>",place(w)) text(70 2000 "2000 dot com bubble>",place(w)) || line NASDAQ_hp10 year

