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ABSTRACT This article presents methods for correct decomposition for high performance computations
related to large sets of graphs. These computations contain large number of calls of sequential, recursive
algorithm for NP-complete problem - proper edge coloring of graph. Decomposition of this computational
problem is not trivial, since the number of recursions in various parts of the computation is different and
causes a high load and time imbalance. We designed, implemented and experimentally verified a new
decomposition method that significantly reduces the computational time for a large set of graphs (up to
404 million graphs). This method ensures the same duration of computational time for partial subtasks and
thus eliminates the need to wait for synchronization of parallel computations.

INDEX TERMS Decomposition, distributed computing, graph coloring, parallel computing, snark.

I. INTRODUCTION
When designing and implementing massive computing appli-
cations for HPC systems, it is necessary to take into account
the appropriate allocation of tasks on computing resources.
At the same time, it is necessary to decompose the compu-
tation so that the individual subtasks of the computation are
processed in the similar (in an ideal case equal) time. In this
contribution, we compute the proper edge coloring of a large
set of graphs (up to 404 million graphs) on an HPC system.

Proper edge coloring of cubic graphs is a problem that
is frequently computed as part of gaining knowledge con-
cerning graph data and properties of graphs, in scheduling,
in register allocation done as a part of source code translation
and compilation, as well as in pattern matching problems [1],
[2]. In these problems, the algorithm needs to color many
graphs, which represents an NP-complete problem. In this
work we will work with cubic graphs - graphs with all
vertices of degree 3 - which represent the simplest (non-
trivial) instance of the problem of edge coloring of graphs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

Although we are working with the simplest instance of the
edge coloring problem, in [16] the authors proved that it is
still an NP-complete problem.

The novel method presented in this article ensures the
optimal decomposition of the problem in the design and
implementation of parallel computations to minimize the
computational time of edge coloring of a sizable set of graphs.
This method consists of meeting two objectives which ensure
considerable parallel speedup of computation of given prob-
lem - 3-edge coloring of set of graphs.

The first objective is to divide the set of graphs into sub-
sets (clusters) so that for each subset of graphs, it is possible
to find the order of edge coloring, which reduces the required
time to compute each graph in the subset. The second objec-
tive is to find such an order of edge coloring of the graph that
the computational time of edge coloring for all graphs in the
set is identical (or within a specified tolerance).

The proposed method was verified on large data sets that
were used in extensive experiments.

Our motivation for design and implementation of these
parallel methods for computing of sequential algorithms for
each graph in sizable graph set is to create a suitable size of
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computational grain [17] in order to use designed algorithms
on any computational system [18], [20]. This brings speedup
of overall computational time of the problem.

In section II of this paper, we present the research, publi-
cations and algorithms related to the problem of reducing the
time of cubic graph coloring based on parallel computing and
clustering.

Section III contains information regarding load balancing
in the system and decomposition of complex tasks into sub-
tasks which acts as main motivation of out work.

Section IV analyzes the theoretical basis for this paper.
Concepts of regular edge coloring of graphs and edge
3-uncolorable cubic graphs are presented.

In section V, the edge backtracking algorithm for edge
coloring of graphs is described. This algorithm is used as part
of our solution for edge coloring of large sets of graphs.

Sections VI - IX contain the main objectives, original
methods and algorithms for edge coloring of large sets of
graphs, testing of these algorithms and evaluating algorithms
while paying attention to correct decomposition of the task.

Conclusions of the presented paper and possibilities for
future work related to time reduction of cubic graph edge
coloring based on parallel and distributed computing are
described in section X.

II. RELATED WORKS
The use of graph coloring as the solution to the scheduling
problem is presented in [1]. In the work in [2], the author
shows methods of register allocation and spilling by coloring
graphs.

Graph coloring is an NP-complete problem that can be
solved using several algorithms such as the following:
• Edge-color algorithm presented by the author of [3].
This algorithm uses polynomial space, which improves
the previous O(2n/2) algorithm of Beigel and Epp-
stein [4]. [3] uses the natural approach of generating
inclusion-maximal matchings of the graph.

• Different approaches to graph coloring were introduced
by the authors of [5], who presented a simple but empir-
ically efficient heuristic algorithm for the edge coloring
of graphs. The basic idea of this algorithm is the dis-
placement of so-called conflicts (adjacent edges iden-
tically colored, see. Fig 3, left) along paths of adjacent
vertices whose incident edges are recolored by swapping
alternating colors using Kempe interchange.

• A simple backtracking approach to edge coloring
of graphs, which uses recursive functions, was pre-
sented in several research articles and publications [6].
We describe this algorithm in detail in section V of this
paper.

The methods presented in the [3], [5] and [6] are used for
sequential edge coloring of singular graphs or sets of graphs.
In our work, we aim to edge color large sets of graphs with
the use of parallel computation of sequential algorithms for
each graph in the sizable graph set in order to minimize the
computational time needed for the coloring of graphs. The

research in this article is a continuation of research related to
the use of parallel and distributed computing to color cubic
graphs:
• In paper [7], we briefly introduced the proper edge col-
oring of graphs in the context of parallel and distributed
computations while using various initial edges to color
the graph implemented via permutation of the adjacency
matrix of the graph.

• The paper [8] presented the use of adjacency matrix
permutation to minimize the computation time of proper
edge coloring of large sets of graphs. In this work,
we present a methodology that can be used to find the
order of edges, which reduces the time of computation
of edge coloring for certain subset of graphs.

• In [9], we analyze 3-edge coloring of cubic graphs using
various initial edges of coloring. We present some of
the problematic subgraphs and patterns that increase
computing time of edge coloring of graphs. We have
also shown the use of adjacency matrix permutation as
a mean to work with these patterns and subgraphs more
efficiently.

Novel approach presented in this article is based directly
on the work and concepts presented in [7]–[9]. These basic
concepts are presented in the section V . Novel approaches
are presented in the sections VI − IX of this article.

The authors of [10] designed an algorithm for automatic
computation and a data decomposition algorithm of a pri-
oritized dominant array (compilation technique that maps
computation and data onto different processors), which ranks
arrays according to their potential communication costs and
finds data decomposition for arrays in decreasing order of
rank.

In [11], the authors proposed an improved static decompo-
sition algorithm of distributed memory parallel computers.

Authors of [12] propose an efficient algorithm to solve
the constrained data-driven optimization problem with dif-
ferent level of noises. This method is of high efficiency
in the comparison with state-of-the-art baseline approaches
with multiple noise levels. In [13] authors propose a new
dynamical approach to detect the cluster configuration fast
and accurately which can be applied to electronic commerce
systems. This approach can be viewed as alternative to other -
conventional - methods of clustering which do not reach high
efficiency of this method.

III. BASIC CRITERIA FOR TASK DECOMPOSITION IN HPC
SYSTEMS
High Performance Computing refers to systems facilitating
the scaling of applications to a large number of nodes. The
characteristic properties of these applications are need for
processing of big data or programs containing large number
of subtasks.

Therefore, we need to look at the computational appli-
cation from a global perspective, which on the one hand
includes knowledge about the appropriate allocation of tasks
on machines of the computing system and on the other hand
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FIGURE 1. Set of jobs with imbalanced load (left) and set of jobs with balanced load (right).

respects the internal structures of the algorithm and the pos-
sibilities of its decomposition.

A. LOAD BALANCING IN HPC SYSTEMS
Let J = {J1, J2, . . . , Jn} be a set of jobs, where job Ji can be
described as part of the overall work that cannot be divided
further.

Let M = {M1,M2, . . . ,Mm} be a set of machines,
where the machine or computing unit is a set of cumulative
resources (processors, memories, and storage space) with
limited capacity. [15]

Load balancing is a technique that distributes the load
(jobs) between number of machines [18]. Job Jij is the j− th
job which needs time for completion of its run on the i − th
machine - this completion time of Jij is denoted by Cij. In the
case, that completion time of the last job on machine i is
Cmaxi , where Cmaxi = max {Ci1, . . . ,Cin}, then completion
time of the last job on all machines is denoted byCmax , where
Cmax = max {Cmax1 , . . . ,Cmaxm}.
A decrease in the computational time of the set of jobs J ,

which means a decrease of Cmax , and therefore optimization
of computation of the set of jobs J can be reached with the
use of load balancing in the computational system.

In the system with imbalanced load the Cmax grows as a
product of large waiting times, therefore time of completion
of whole set of jobs J is prolonged (see Fig. 1, left). On the
other hand - when the load in the system is balanced, the
overall computational time of the set J is decreased (Fig.1,
right).

B. DECOMPOSITION OF TASKS IN PARALLEL COMPUTING
When creating a parallel computation, we decompose the
complex task P into a set of subtasks P = {P1,P2, . . . ,Pn}.
An important parameter that needs to be monitored is the
computation time of individual subtasks. In the area of paral-
lel computing there are various types of subtasks - subtasks
that can be independent of each other, but more often subtasks
which contain various dependencies. A typical dependency
between subtasks is created by inserting a synchronization
point at which the computation needs to wait for all subtasks

to complete. For example, waiting for intermediate results
before making a summary computation. [15]

Let T (Pi) be runtime needed to perform the task Pi, then
the parallel computation time for the system containing num-
ber of processors equal to number of tasks is given by the
maximum of time intervals T (Pi) [18]:

T (n,P) = tc−ts = max{T (Pi)|i = 1 . . . n}, if p = n (1)

where tc denotes time of completion of the subtask and ts
denotes time of start of computation related to the subtask.
Therefore, for a correct decomposition, we require approxi-
mately identical time intervals T(Pi) to solve individual sub-
tasks [18], [19]:

T (P1) ≈ T (P2) ≈ . . . ≈ T (Pn) (2)

Since we often do not have a system that is wide enough -
it does not contain as many processors as necessary - we need
to process tasks in batches (see Section VIII).

No matter what variant of parallelism is used, it may not be
known at compile time howmuch time a part of work actually
takes. In general, an algorithm that requires each worker to
perform a number of iterations or recursions in order to reach
some convergence limit could be inherently time imbalanced,
since a different number of iterations may be needed for
each part of the computed problem. [14] Therefore, it is not
trivial to achieve identical computation times specified in
relation (2).

As conclusion of this section of the paper, we summarize
the basic criteria for task decomposition in HPC systems:

• load balancing in High Performance Computing -
decrease of Cmax in batches of jobs,

• decomposition of task in such away, that criteria for time
balancing are fulfilled.

This paper aims to present parallel computations for edge
coloring of sets of graphs, the basis of which is the cor-
rect decomposition of a given problem. As can be seen in
the section V , these jobs may contain recursions (with an
unpredictable number of recursive iterations) and create an
imbalance of computational time.
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FIGURE 2. Example of a simple graph.

FIGURE 3. Improper (left) and proper (right) coloring of the same graph.

IV. EDGE COLORING OF SNARKS
The problem of proper edge coloring of cubic graphs,
described in this section of the paper, is classified as
an NP-complete problem [16]. Graph G consists of the
following [21]:

• vertices: elements of set V(G). In Fig. 2, vertices are
labeled with capital letters A, B, C and D.

• edges– elements of set E(G). An edge is a connection
between two vertices, so we can label it using the names
of these two vertices.

Graph G is a pair of sets V and E, where elements of set E
are double-element subsets of set V [22]:

G = (V ,E), E ⊆ [V ]2 (3)

If vertex V is of degree 3, we use deg(V) = 3. This
concept represents the number of edges that are incident to a
given vertex (since we strictly work with undirected graphs,
by incident, we mean connected to the vertex in any way).
The highest (maximal) degree of vertex in graphG is denoted
by 1(G). In this paper, we consider strictly cubic graphs.
The graph is cubic when all of its vertices are of degree 3
(see Fig. 2).

A. EDGE COLORING OF GRAPHS
The edge coloring of the graph is an operation of assigning
colors to individual edges of the graph. Coloring is called
proper when there is no conflict in the coloring of a given
graph, which implies that no vertex of a given graph is
incident to two or more edges with the same color. The lowest
number of colors usable in the proper edge coloring of graph
G is called the edge chromatic index of graph G, and it is
denoted by χ ′(G) [22].
Vizing’s theorem [22], which says that the minimal num-

ber of colors required to color the graph is in the interval
〈1(G),1(G)+ 1〉, holds true. The formal notation ofVizing’s

FIGURE 4. Proper coloring of smallest snark - Petersen graph.

theorem focuses on the minimal number of colors:

1(G) ≤ χ ′(G) ≤ 1(G)+ 1 (4)

where 1(G) is the maximal degree of the vertex in graph G,
and χ ′(G) is the edge chromatic index of graphG. Since every
vertex of the cubic graph is of degree 3, we consider three or
four colors to properly color the cubic graph.

B. EDGE 3-UNCOLORABLE CUBIC GRAPHS
If anybody chooses random graph G from the group of cubic
graphs, the chromatic index of this graph is likely equal to 3.
This cubic graph G is called edge 3-colorable [23]. There is
a small group of cubic graphs that need four colors for their
proper coloring. Graphs from this group of cubic graphs are
called edge 3-uncolorable or snarks [6].

The chromatic index of snarks is χ ′(G) = 4. To determine
whether a given graph G is a snark, we must edge color it
using three colors. Therefore, the coloring algorithm needs to
check every possibility of edge 3-coloring of graph G. Algo-
rithms can decide whether the graph is snark after checking
all possible edge colors using three colors.

V. EDGE BACKTRACKING ALGORITHM
This section introduces the sequential algorithm based on
breadth-first search, which is called the edge backtracking
algorithm.

The edge backtracking algorithm works based on the edge
coloring of graphs with predetermined successions of three
colors. In this case, when the algorithm finds a conflict in
the coloring of the graph, it backtracks to the previous edge,
recolors the edge and continues coloring. If there are no pos-
sible proper colorings of the problematic edge, the algorithm
further backtracks to the edge that precedes both recolored
edges. The algorithm continues in this approach until either
the whole graph is properly colored or until the algorithm
examines all possible edge coloringmethods of a given graph.

The time complexity of the edge backtracking algorithm is
O(2n−1), where n is the number of vertices of a given graph.
The algorithm itself is represented in the following steps:

1) The algorithm takes three colors and colors of consecu-
tive edges of graph until either of the following occurs:
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• the graph is colored properly,
• or there is conflict in the graph coloring.

2) In the case of conflict in the coloring of graph, the
algorithm backtracks to edges that were already colored
and recolors them using the next color in predeter-
mined succession of colors until either of the following
occurs:
• the conflict is solved, –where in this case, the
algorithm can continue coloring more edges of the
graph, as stated in the first step of the algorithm,

• or all possibilities of edge coloring of the graph are
improper, where in this case, the colored graph is
snark (cubic graph that cannot be properly colored
using three colors).

The algorithm is used in parallel parts of all proposed
methods in later sections of this paper.

VI. MODELS OF PARALLEL COMPUTATIONS FOR EDGE
COLORING OF GRAPHS
In the examination of graph properties, the edge coloring of
the graph is partial operation. Thus, we must reduce the com-
putational time of edge coloring. In [7] and [8], we showed
that one graph can be colored at different times if we color
it in different orders of edges. In the whole paper, we use
the label permutation of graph as this changed order of edge
coloring. In the algorithms in sections VII - IX, we work with
the concept of coloring permuted cubic graphs—graphs with
identical structures but different orders of edges. The permu-
tation of graphs is based on a simple matrix multiplication in
relation 3.

Let graph G be represented by adjacency matrix A.
We must create a large number of permutations of adjacency
matrix A; therefore, we create a number of modifications of
one graph with different orders of edges.

We use graph automorphism. Let graphG’ be automorphic
to a given graph G. An important property of automorphic
graphs is that any arbitrary pair of such graphs is described
by different adjacency matrices but can be presented as the
same diagram with different (displaced) labelling of edges
and vertices (see Fig. 5). In our case, this means that we work
with the same graphs with different orders of vertices and
edges.

The permutation of adjacencymatrixA of graphG to create
an automorphic graph is computed as follows:

A′ = P−1 ∗ A ∗ P (5)

where A is the adjacency matrix of given graph G, P is a
randomly generated permutation matrix (matrix containing
exactly one value 1 in every row and column), P−1 is trans-
posed permutationmatrixP, andA′ is the permuted adjacency
matrix of graph G.

The permuted matrix A’ obtained by this computation rep-
resents the changed order of edges of the original graph G.
We use this order (permutation) in our algorithms for edge
coloring.

FIGURE 5. Example of isomorphic graphs with their matrices.

In the presented work, we describe the continuation of our
research, while we set two objectives, which are explored in
the following sections of the article:

• Computational model based on graph clustering. The
model clusters graphs to groups based on which one
of the chosen permutations decreases the computational
time of the whole group of graphs.

• Computational model based on data decomposition.
The model divides the input set of graphs into several
parts and colors them in parallel based on principles
introduced in Section III.B.

• Computational model using graph clustering and
data decomposition. This model is a combination of the
aforementioned algorithms. It divides the input data set
into several parts and clusters the graphs in these parts.

All presented results were computed on part of the high-
performance computing system in the High-Performance
Computing Center of Matej Bel University in Banská
Bystrica [24]. This system contains over 560 processors on
36 nodes.

The data in our experiments were obtained from an online
database of graphs called House of Graphs [25]. For the
purposes of our research, we chose three sets of 34 vertex
snarks. Each set contained 19 935 to slightly over 25 million
graphs. The differences among these sets of graphs lay in
various properties of the graphs, which are not our focus in
this article.

As mentioned in the introduction of the presented paper,
we set two main objectives:
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Objective 1: Divide a set of graphs to subsets (clusters) so
that for each subset of graphs, it is possible to find the order
of edge coloring, which reduces the required time to compute
each graph in the subset.

We are searching for colorings of graphs that minimize
the computational time of edge coloring itself. We chose a
constraint of one millisecond, meaning that the algorithm
needs to color each graph from the chosen set of graphs in
less than one millisecond.

This constraint is important in reducing the time com-
plexity of edge coloring of a set of graphs and from the
point of view of a correct decomposition of the problem. The
key concept in the decomposition of tasks to subtasks is the
similarity (in ideal case equality) of the computational time
of all subtasks [18].

In objective 2, we address this significant constraint of the
effective decomposition of tasks.
Objective 2: Find such order of edge coloring of graphs

that the computational time of edge coloring for all graphs in
the set is identical (or within specified tolerance).

VII. ALGORITHM OF FUNCTIONAL DECOMPOSITION
BASED ON CLUSTERING
This part of the paper contains an algorithm of functional
decomposition based on clustering (AFDC). To examine
objective 1 and objective 2, we designed an algorithm of
functional decomposition based on clustering.

The input datasets of the algorithm are the following:
• Input set of graphs N stored in graph6 format—a–
memory-friendly format to store graphs encrypted in
vectors.

• Set of permutations P. We chose a set of 500 permu-
tations computed in previous experiments in [8]. These
permutations were chosen based on the computational
time of edge coloring, which was the shortest. The cho-
sen permutations are sorted in ascending order of com-
putational time of coloring, where the first permutation
corresponds to best (fastest) order of edges for edge
coloring.

The algorithms of functional decomposition based on
clustering work as follows:
1) Choose the permutation with the lowest time of color-

ing from set P and label it PBEST . Apply this permuta-
tion to the input set of graphs N and edge color this
permuted set in parallel using the edge backtracking
algorithm.

2) Check the chosen time constraint for every graph in the
set. The constraint is designed as follows: Was graphG
edge colored in less than one millisecond?
• TRUE: Graph G is allocated to cluster Ck and
removed from set N .

• FALSE: The algorithm continueswith the next step
without any action.

3) Permutation PBEST is allocated to cluster Ck and
removed from set P.

4) If some graphs remain in set N , the algorithm creates
new clusters and cycles back to step 1 of this algorithm.
If the set of graphs N is empty, i.e., all graphs were
colored in less than one millisecond, the algorithm
stops.

The output of the algorithm is a set of k files; –each file
contains a cluster of graphs colored in under one millisecond
and a permutation, which was applied on each graph in the
cluster to reach this time of edge coloring. The algorithm is
illustrated by the schema in Fig. 6 and in Algorithm 1.

Algorithm 1 Functional Decomposition Based on Graph
Clustering
Require: N ,P
k = 0
repeat
k ++
PBEST = Pk

in parallel do

use edgeBacktracking to color graphs from N while
using PBEST
if coloringTime(Gn) < 1 ms then
add Gn to cluster Ck
remove Gn from N

end if
remove PBEST from P
pair PBEST with cluster Ck

end parallelism

until N is empty

By implementing this methodology, we expect at least par-
tial fulfillment of objectives 1 and 2. The designed algorithm
does not successfully end if there are graphs in N that cannot
be colored in the time set under the constraint of the algorithm
(one millisecond). A successful run of the algorithm creates
k clusters with all graphs from the input set N in them.
In [7] and [8], we show that it is possible to find the order

of edge coloring of the graph (permutation), which reduces
the computational time of edge coloring for the whole group
after it is applied to the entire set of graphs. In Figures 7 and 8,
we present a comparison of the maximal computational times
of edge coloring for a set of graphs while using randomly
generated permutations (Fig. 6) and one verified permuta-
tion, which reduces the computational time of edge coloring
(Fig. 8).

A. EXPERIMENT 1—EXPERIMENTS ON THE ALGORITHM
OF FUNCTIONAL DECOMPOSITION BASED ON
CLUSTERING
The presented methodology was experimentally tested on the
set of 19 935 snarks with 34 vertices. From the graph in
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FIGURE 6. Schematic of the algorithm based on graph clustering.
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FIGURE 7. Maxima of coloring time for graphs while using random
permutations of graphs.

FIGURE 8. Maxima of coloring time for graphs while using chosen
permutation with low coloring time.

Fig. 8, this set of graphs clearly contains a large part (near the
x-axis), which will be colored in under one millisecond. The
set of permutations P was created from the best 500 permu-
tations from previous experiments in [8]. Both input sets N
and P were given to the algorithm. The previous experiment
clearly shows that when the algorithm successfully runs, the
graphs can be divided into 2–40 clusters. The first cluster
should contain all graphs that were colored in less than
one millisecond (see Fig. 7) using the first permutation in
P—–this subset of graphs contains 19 896 elements (from
the original 19 935). The remaining 39 graphs can be divided
into 1–39 clusters based on their edge coloring times after
applying other permutations from P.

In this experiment, the algorithm created the following
clusters of graphs with their allocated permutations:

• Cluster 1, best permutation PBEST = P1
– In total, 19 896 graphs were edge-colored at less

than one millisecond.

• Cluster 2, best permutation PBEST = P2

TABLE 1. Results of measurements in the experiment on algorithm based
on graph clustering.

FIGURE 9. Comparison of computing times for edge coloring of the set of
19 935 graphs.

– All 39 graphs were edge-colored at less than one
millisecond.

• Set N is empty; therefore, the algorithm ends.

Only two algorithm cycles were required to find clusters
with their associated permutations (orders of edge coloring).
The results of the measurements of the experiment and the
computational system used are listed in Table 1.

In Fig. 9, we present a comparison of computing times of
edge coloring for the whole set of 19 935 graphs. We com-
pare sequential computational time of edge coloring (Seq),
parallel computational time using proposed algorithm (Par)
and required time for edge coloring of graphs in clusters C1
and C2 (Par_C1 and Par_C2).

B. EVALUATION OF EXPERIMENTS ON THE ALGORITHM
OF FUNCTIONAL DECOMPOSITION BASED ON
CLUSTERING
Experiment 1 shows that it is possible to find a set of permu-
tations of graphs that reduces the computational time of the
whole group of graphs to the required limit. In the experiment,
we show that to color the chosen set of 19 935 snarks in this
manner, the algorithm needs the first two from the chosen
500 permutations (orders of edge coloring). This experiment
points to the successful fulfillment of objective 1.

Simultaneously, it is possible to find such an order of edge
coloring of the graph that the computational time of coloring
of all graphs from the chosen set is similar. With the selection
of a suitable permutation algorithm, colored graphs in the set
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time (constrained to less than one millisecond). Experiment
1 points to the successful fulfillment of objective 1.

To confirm the results of experiment 1, it is necessary to
test the proposed methodology on larger sets of graphs. Thus,
we designed and implemented the models in the following
subsections of the paper.

VIII. COMPUTATIONAL MODEL BASED ON DATA
DECOMPOSITION
To edge color large sets of graphs that contain millions
of graphs, we designed and implemented the methodology,
which uses suitable permutations of graphs and data pro-
cessing in batches. This computational model works with a
sizable set of graphs in the graph6 format. This dataset is
preprocessed by a script, which divides it into subsets (called
data parts) in which each subset contains a similar number of
graphs. The size of the data part depends on the computing
system used; in our case, the size of each data part is at most
500 000.

A. ALGORITHM BASED ON THE DATA DECOMPOSITION
MODEL
We designed an algorithm based on a data decomposition
model (ADDM). As an input for this algorithm, we use a
sizable set of graphs in graph6 format, which is divided into
data parts. Each data part is distributed over the available
computing system and processed by the algorithm based on
the data decomposition model as follows:

1) Storing data from data part into matrixM . Since graphs
are stored in the form of a graph6 vector, it is possible
to create a matrix, which can represent the whole set of
graphs in a given data part. The number of rows of this
matrix is equal to the number of graphs in the data part,
and the number of columns is equal to the number of
elements in the vector describing graphs in the graph6
format.

2) Parallel edge coloring of graphs. The algorithm pro-
cesses graphs stored in matrixM in batches. The num-
ber of batches is directly dependent on the number of
parallel threads, which can be simultaneously run on
the computing system:

b = n/t (6)

where b is the number of batches, n is the number of
graphs in the matrix M , and t is the number of paral-
lel threads (see Section III .B). The algorithm creates
a given number of parallel threads, and each thread
obtains one row of matrixM , with one graph in graph6
format. Then, in each parallel thread:

• a graph is translated from graph6 format into the
adjacency matrix of the graph,

• the graph is permuted (see relation 3) using permu-
tation with the least coloring time (found in [8]),

• the graph is edge-colored.

After all graphs in the batch are colored, the algorithm
joins parallel threads, takes another row of matrix M
and repeats this step.

3) After all graphs from the data part are colored, the algo-
rithm records the graph ID and required computational
time to edge color the graph into a file, which is shared
among all graphs in the data part.

The output of the algorithm consists of several files (the
number of files depends on the number of data parts into
which the input set of graphs is divided). A schematic of the
algorithm is presented in Fig. 9 and Algorithm 2.

Algorithm 2 Algorithm Based on the Data Decomposition
Model
Require: N

use division script to divide N into n parts

for each data part - concurrently

store data from data part into matrixM
i = 0, j = 99
repeat
take graphs (rows ofM ) from i to i+ j

in parallel do

use edgeBacktracking to color 100 graphs

end parallelism

i = i+ j+ 1
until all graphs edge colored

B. EXPERIMENT 2—EXPERIMENTS ON THE ALGORITHM
BASED ON THE DATA DECOMPOSITION MODEL
The proposed algorithm was experimentally tested on the set
of graph data, the sequential computation time of which was
too high to use sequential algorithms for their coloring. This
dataset contains 3 833 587 snarks with 34 vertices. The graph
set was divided into eight similar data parts (approximately
479 198 graphs per part). The data parts were colored in
batches of 100 graphs. The measurement results and compar-
ison of the proposed parallel method and sequential method
in terms of the required computational time and memory
are presented in Table 2 and Fig. 11. In Table 2, sequential
algorithms are labeled Seq, and the presented algorithm is
labeled with abbreviation ADDM (algorithms based on the
data decomposition model).

From Table 2 and Fig. 11, the proposed algorithm based
on the data decomposition model significantly speeds up the
computations containing millions of graphs, which dramati-
cally increases the required memory for computation of the
algorithm. The computing system, which contains 5 nodes
and 12 processors per node, is based on a virtualization
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FIGURE 10. Schematic of the algorithm based on the data decomposition model.

VOLUME 10, 2022 35005



J. Skrinarova, A. Dudáš: Optimization of Functional Decomposition of Parallel and Distributed Computations in Graph Coloring

FIGURE 11. Comparison of the required time and memory consumption.

TABLE 2. Comparison of the required time and memory consumption.

on the High-Performance Computing Cluster at Matej Bel
University in Banská Bystrica, Slovakia.

C. EVALUATION OF EXPERIMENTS ON ALGORITHMS
BASED ON A DATA DECOMPOSITION MODEL
Compared to the sequential algorithm for the edge color-
ing set of graphs, the parallel/distributed approach in this
section of the paper reached a parallel speedup of 31.2,
while the required RAM for computation was approximately
288.1 times higher. A detailed analysis of the results shows
that from the input set of 3 833 587 graphs:
• 3 301 223 graphs were edge-colored in less than one
millisecond,

• 532 364 graphs were colored in more than one millisec-
ond, while:
– 484 267 graphswere colored in 10–20milliseconds,
– 38 486 graphs were colored in 20–30 milliseconds,
– 6 881 graphs were colored in 30–40 milliseconds,
– 1 750 graphs were colored in 40–50 milliseconds,
– 735 graphs were colored in 50–60 milliseconds,
– 175 graphs were colored in 60–70 milliseconds,
– 70 graphs were colored in 70–80 milliseconds.

This analysis of the results points us toward combining the
above algorithms to satisfy both set objectives of this paper.

IX. COMPUTATIONAL MODEL USING GRAPH
CLUSTERING AND DATA DECOMPOSITION
From the measurements in the previous section, the algorithm
based on the data decompositionmodel is clearly a substantial

improvement in terms of reducing the computational time
of edge coloring of graph sets. The achieved result is not
satisfying in terms of objective 2, which requires similar
computational times of coloring for all graphs in the colored
set. From the results of experiment 2, the chosen set of graphs
was colored in 0.2–80 milliseconds.

A. ALGORITHM USING GRAPH CLUSTERING AND DATA
DECOMPOSITION
We designed the following combination of algorithms, which
secures a decrease in time to color the graph set and satisfies
the condition of objective 2 (the time constraint is, again, one
millisecond). As an input for the algorithm, we use the same
sets as in the algorithm based on graph clustering - set of
graphs N and set of permutations P.
The algorithm using graph clustering and data decom-

position (ACDD) is described as follows:
1) Division of graph set N into data parts. Similar to

the algorithm based on the data decomposition model,
the algorithm divides the input set of graphs N into
n smaller parts using a division script. Specifically,
the script divides the input dataset into approximately
equal subsets of approximately 500 000 elements.

2) Distribution of data parts. Based on the data decompo-
sition model algorithm, the data parts (subsets) created
in the previous step are distributed over the available
computing system.

3) In the next step, the proposed algorithm executes indi-
vidual steps of the algorithm based on graph clustering
for each of n data parts created from input dataset N :
• Choose the permutation with the lowest time of
coloring PBEST from P and apply it on the entire
data part.

• Edge color the graphs in the data part in parallel
using the parallel thread model.

• Check the constraint for all graphs in the data
part: Was graph G edge colored in less than one
millisecond?

• Create cluster of graphs that satisfy the above
condition.
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• Allocate PBEST to the created cluster of graphs.
• Remove PBEST from set P and remove the graphs
with coloring time under one millisecond from the
data part.

These steps are repeated until the given data part is not
empty or the algorithm has unsuccessfully attempted
all permutations (e.g., there is a graph that cannot be
colored in less than one millisecond).

Algorithm 3 Algorithm Using Graph Clustering and Data
Decomposition
Require: N ,P
use division script to divide N into n parts - N1, N2, . . . ,
Nn

for each data part - concurrently

k = 0
repeat
k ++
PBEST = Pk

in parallel do

use edgeBacktracking to color graphs from N while
using PBEST
if coloringTime(Gn) < 1 ms then

add Gn to cluster Ck
remove Gn from N

end if
remove PBEST from P
pair PBEST with cluster Ck

end parallelism

until data part is empty

The output of the algorithms consists of a set of files con-
taining clusters of graphs with their allocated permutations
for each of n data parts. To collect results, it is necessary to use
an agglomeration function on the set of files. This function
connects files (clusters) with identical permutations.

A schematic of the algorithm using graph clustering and
data decomposition is presented in Fig. 12 and Algorithm 3.

B. EXPERIMENT 3—EXPERIMENTS ON ALGORITHM
USING GRAPH CLUSTERING AND DATA DECOMPOSITION
The algorithm using graph clustering and data decomposition
was experimentally tested on all available data sets for snarks
with 34 or more vertices [25]:
• set of 3 833 587 graphs, which contains snarks with
34 vertices,

• set of 25 286 953 graphs, which contains snarks with
34 vertices,

• set of 180 612 graphs, which contains snarks with
36 vertices,

TABLE 3. Graph clusters for the set of 3 833 587 snarks with 34 vertices.

TABLE 4. Graph clusters for the set of 25 286 953 graphs with 34 vertices.

TABLE 5. Graph clusters for the set of 180 612 graphs with 36 vertices.

• set of 60 167 732 graphs, which contains snarks with
36 vertices,

• set of 404 899 916 graphs, which contains snarks with
36 vertices,

• set of 35 429 graphs, which contains snarks with 38 ver-
tices,

• set of 39 graphs, which contains snarks with 38 vertices,
• set of 19 775 768 graphs, which contains snarks with
38 vertices,

• set of 25 graphs, which contains snarks with 40 vertices.

The results of the measurements from this experiment
are presented in Tables 3-11. All values in the tables were
measured on the computing system consisting of 5 nodes
and 12 processors per node in the HPCC UMB in Banská
Bystrica, Slovakia.

From the previous experiments (mainly experiment 2), the
algorithm based on the data decomposition model has high
memory requirements. In addition to the considerable mem-
ory requirements of the presented algorithm, it is necessary
to show other costs of computation - the time required to
decompose the input data set.

The time required for a script which takes care of
the decomposition of an input dataset (as described in
section VIII .A) is linear - O(n), where n is the size of the
data part (in our case 500 000 graphs). This time is negligible
compared to computational time of thewhole taskwhen using
smaller datasets.

In the case of largest used data sets, the algorithm
needed:

• almost 3.2 TB of RAM for the data set of
19 775 768 snarks with 38 vertices, the time for decom-
position of the dataset was 4 minutes 34.1 seconds,
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FIGURE 12. Schematic of the algorithm using graph clustering and data decomposition.

• almost 4 TB of RAM for the data set of 25 286 953 snarks
with 34 vertices, the time for decomposition of the
dataset was 7 minutes 40 seconds,

• almost 4.5 TB of RAM for the data set of
60 167 732 snarks with 36 vertices, the time for decom-
position of the dataset was 16 minutes 43.2 seconds,

• almost 9 TB of RAM for the data set of 404 899 916
snarks with 36 vertices, the time for decomposition of
the dataset was 1 hour 24 minutes and 32.4 seconds.

Although in these cases the overheads are not small,
together with the computational time of the problem, our

approaches still represent a considerable speedup of the
computation itself. In the tables containing outcome of
experiments, we present the measurement of the following
properties of computation:
• Cluster number: ID number of cluster that contains clus-
tered graph data,

• PBEST number: ID number of permutations used in a
given cluster,

• Computing time: time to color all graphs in a given
cluster,

• Memory needed: RAM needed to run the program,
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TABLE 6. Graph clusters for the set of 60 167 732 graphs with 36 vertices.

TABLE 7. Graph clusters for the set of 404 899 916 graphs with
36 vertices.

TABLE 8. Graph clusters for the set of 35 429 graphs with 38 vertices.

TABLE 9. Graph clusters for the set of 39 graphs with 38 vertices.

TABLE 10. Graph clusters for the set of 19 775 768 graphs with
38 vertices.

• Number of graphs colored in more than one millisec-
ond. These graphs must be recolored using another
permutation.

C. EVALUATION OF EXPERIMENTS ON THE ALGORITHM
USING GRAPH CLUSTERING AND DATA DECOMPOSITION
We can compute the required time to color the whole set
of graphs while considering the condition of objective 2

TABLE 11. Graph clusters for the set of 25 graphs with 40 vertices.

as follows:

To =
k∑
i=1

Tcmaxi (7)

where To is the overall computational time to edge color a
given set of graphs, k is the number of clusters, and Tcmaxi is
the computational time of cluster number i.

In the experiments that used the presented computational
model, we worked with data sets of different sizes. In addition
to the set sizes, the individual data sets differed in the number
of vertices of the graphs (34, 36, 38 and 40) they contained
and other mathematical properties (girth and cyclic connec-
tivity of the graph) - although we do not work directly with
these properties as in [26].

FromTable 3, for the problem of edge coloring of the graph
set, which contains 3 833 587 graphs, we needed four clusters,
which were computed in 01:14:54. Therefore, we reached
the time of coloring for each graph in the set, which was
lower than one millisecond using four orders of edge coloring
(permutations).

Table 4 shows that for the set of 25 286 953 graphs,
we needed five clusters (five permutations) to reach the limit
of coloring time for each graph in the set. This computation
took 04:32:35.

Similar to 34-vertex graphs, we proceeded with three sets
of 36-vertex graphs. The first subset contains 180 612 graphs
and the total computation time of its edge-coloring was
00:01:25. The other two subsets of 36-vertex snarks contain
more than 60 million and more than 404 million graphs.
The total computation time for the set of 60 167 732 graphs
was 09:01:15. For the set of 404 899 916 snarks, the time
of coloring computation came up to 53:18:50. There is a
fourth set of graphs in the section of 36-vertex snarks, but
it contains only one element and therefore is not fitting for
our experiments.

When working with 38-vertex snarks we used three sets
of graphs. The first of them contained 35 429 elements
and the presented algorithm was able to edge-color it in
53 seconds. The second set of 38-vertex snarks was a
small set of 39 graphs that were colored in 3 seconds. The
edge-coloring of last subset of 38-vertex snarks, which con-
tains 19 775 768 graphs, was computed in 03:17:39.

In the case of 40-vertex snarks, we have only one set of
25 graphs, which, however, was surprisingly divided into
three clusters and colored in 6 seconds.

In all experiments (where it was possible to make a com-
parison), it was confirmed that the use of our computation
method leads to a significant reduction in computation time.
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TABLE 12. Comparison of sequential and parallel computational times
and number of permutations on 34-vertex snarks.

For example, for 3 833 587 graphs, the original sequential
computation took approximately 34 hours and 48 minutes,
and after using our method, the same computation took
1 hour and 14 minutes - indicating approximately 31-fold
acceleration of the computation (see Table 12). Using our
method, it was possible to make a computation for large sets
(approximately 60 and 404 million) of graphs with 36 ver-
tices, for which it was not practical to perform sequential
computations.

Although the algorithm needs a very large memory,
it allows decent parallel speedup of computation and can cre-
ate clusters of graphs that have assigned their permutations,
which can satisfactorily color graphs from the viewpoint of
objective 2 (consequently from the viewpoint of effective
decomposition).

X. CONCLUSION
In this paper, we have established the basic criteria for the cor-
rect decomposition of computations in HPC systems. These
criteria are based on load balancing and time balancing con-
cepts as presented in the section III and were used in design
of our main objectives:

• Divide a set of graphs to subsets (clusters) so that for
each subset of graphs, it is possible to find the order
of edge coloring, which reduces the required time to
compute each graph in the subset.

• Find such order of edge coloring of graphs that the
computational time of edge coloring for all graphs in the
set is identical (or within specified tolerance).

In order to explore set objectives, we have designed and
implemented models of computation that can be used to find
a set of such permutations that all graphs in a given set
require less time to color. All presented experiments confirm
significant reduction of computation time needed for edge
coloring of large sets of graphs.

All measurements in this paper (see Tables 3-11) show that
when different orders of graph coloring are used, we require
low number of permutations (e.g. for approximately 25 mil-
lion graphs we need 5 clusters, for approximately 404 million
graphs we need 16 clusters), while for each cluster algorithms
uses one order of edge coloring of graphs.

Although the parallel speedup of the computation is con-
siderable, the disadvantage of the parallel approaches is the
memory requirements (as can be seen from Tables 3-11).

Generally, the memory consumption of the algorithm and
the number of parallel threads that can run simultaneously
depends on the system we use to compute the problem.
When working with the proposed computational models, it is

necessary to take into account the basic thesis of parallel
computation [28], [29], which says that the computational
time required to solve a problem using a parallel algorithm is
polynomially related to memory space required for sequen-
tial computation of the same problem. As can be seen in
section IX .B, the memory requirements for proposed algo-
rithms are relatively high - based on used dataset it varies from
3.2 to 9 TB of RAM.

The number of parallel parts for the task of edge coloring
complexity depends mainly on the memory possibilities of
the system. In our case, however, we have a system with a
sufficiently high memory capacity and therefore it is possible
to process a large number of subtasks in parallel. During the
experiments, we encountered a low-memory problem several
times, which was simply fixed by reducing the number of
parallel threads in the computation. The maximal number of
parallel parts which could be used in our high performance
computing systemwas 500. This number of parallel parts was
determined mostly by experimentation and can be different
on any other system.

Future works related to the presented results can focus on
examining several main areas of research.

Graph coloring is usable in various areas of research,
–including scheduling, radio frequency allocation, compiler
optimization and SAT solvers. It would be fitting to design
and implement methodology to compare the proposed algo-
rithms and models in this article and the standard solution
models for the aforementioned problems.

It is possible to search for properties that define the order of
edge coloring of the graph (permutation) as low (resp. high)
computational time. If such properties are distinguishable,
it is possible and necessary to create an algorithm to generate
such permutations for various types and sizes of graphs. Also,
common properties of graphs in created clusters need to be
examined and analyzed.

Other than working directly with known properties of
graphs, implementation of methods of artificial intelligence
similar to [27], whichwould be able to analyze graph coloring
and propose fitting permutations for given set of graphs is
desirable.
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