
A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

VISUAL VS. TEXTUAL PROGRAMMING: A CASE STUDY ON MOBILE APPLICATION
PROGRAMMING BY TEENAGERS

aTOMÁŠ TÓTH, b

GABRIELA LOVÁSZOVÁ

aDepartment of Informatics, Faculty of Economics and
Management, Slovak University of Agriculture in Nitra, Tr. A.
Hlinku 2, 949 76 Nitra, Slovakia
b

email:

Department of Informatics, Faculty of Natural Sciences,
Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1,
949 01 Nitra, Slovakia

attoth@uniag.sk, b

glovaszova@ukf.sk

This study was written within the KEGA project 018UMB-4/2020 Implementation of
New Trends in Computer Science to Teaching of Algorithmic Thinking and
Programming in Informatics for Secondary Education.

Abstract: Choosing the right way of programming can prevent learning difficulties,
contribute to increasing students’ motivation to learn, and make teaching process more
effective. The article is focused on assessing which way of programming, visual or
textual, is appropriate for intermediate and advanced learners in the context of creating
mobile applications. Three ways of programming were examined during an
extracurricular programming course for teenagers aged 12-18 with previous
programming experience and positive attitude to programming. The course was aimed
at programming mobile applications. MIT App Inventor 2 as a visual programming
tool and Android Studio with Java as a textual programming tool were chosen. Due to
the gap between two programming tools, the method of transition from visual to
textual programming using Java Bridge Code Generator and Java Bridge Library as
mediators was implemented. The research results are based on the analysis of data
obtained from participatory observations, interviews with students, questionnaires and
source codes of applications created by students. The case study shows a difference in
students’ performance between visual and textual programming in favour of visual
programming. However, the difference in students' attitudes toward visual and textual
programming was the opposite in favour of textual programming, regardless of age
and learning performance. These results suggest that App Inventor visual
programming environment is advantageous at the beginning of learning programming,
but may be perceived as too limited and not enough motivating for intermediate and
advanced students, even though programming in Android Studio professional text-
based environment is too challenging for them.

Keywords: mobile applications; teaching of programming; textual programming;
visual programming.

1 Introduction

Teaching Informatics as school subject and specifically
programming as a part of Informatics curriculum is important for
students in several aspects. Computer skills are essential and
beneficial for everyone in current digital age. However, teaching
Informatics should not be focused only on acquiring skills to
work with computers. Hromkovič and Steffen (2011) justify why
teaching Informatics in schools is as important as other more
traditional school subjects, thus it should also include
fundamental concepts of computer science dealing with
algorithmic information processing.

Teaching programming plays an important role in the
development of computational thinking. This term was firstly
introduced by Wing (2006): “Computational thinking involves
solving problems, designing systems, and understanding human
behaviour, by drawing on the concepts fundamental to computer
science.” It includes problem-solving skills such as abstraction,
pattern recognition, decomposition, and algorithm design. Saeli
et al. (2011) state that these skills are developed through
programming, when students need to reflect how to
communicate their solutions to the machine using a
programming language. Several authors point to the benefits of
learning programming to improve computational thinking and
creativity through creating mobile apps (Dekhane et al., 2013;
Tkáčová et al., 2017), designing games (Javidi and Sheybani,
2014), digital storytelling (Weintrop et al., 2018), controlling
robots (Vega and Cañas, 2019). At the same time, difficulties
with notation of algorithmic solutions need to be mentioned,
which include problems of the syntax and the semantics of
programming language that plays the role of a formal medium
for expressing ideas.

Programming is considered by many authors as difficult and its
learning is accompanied by various challenges. Many of them
are associated with insufficient motivation of students, the

ability to solve problems, or the choice of programming way and
programming environment, such as:

 complexity of the programming language and programming

environment (Koorsse et al., 2015; Krpan et al., 2017;
Papadakis and Orfanakis, 2018; Radosevic et al., 2009; Saeli
et al., 2011),

 difficulties with the basic programming concepts (e.g.,
control structures and loops) (Koorsse et al., 2015; Krpan et
al., 2017; Mladenović et al., 2018; Ouahbi et al., 2015;
Papadakis and Orfanakis, 2018; Radosevic et al., 2009),

 syntax and semantics issues (Koorsse et al., 2015; Krpan et
al., 2017; Mladenović et al., 2018; do Nascimento et al.,
2019; Ouahbi et al., 2015; Radosevic et al., 2009; Saeli et
al., 2011),

 insufficient planning and designing of the algorithm
(Koorsse et al., 2015; Krpan et al., 2017; Papadakis and
Orfanakis, 2018).

Thus, the choice of an appropriate programming language and
programming environment can affect students’ success in their
learning to program. Krpan et al. (2017) state that especially the
student’s first contact with programming is often a key moment
when the student gains or loses interest in programming. For this
reason, it is important to choose a suitable programming
language and programming environment.

Garneli et al. (2015) also point out that many parameters must be
considered in the teaching of programming, such as the age of
the students, their experience, and the learning objectives. The
right choice of programming way, programming language and
programming environment can lead to the prevention of
difficulties associated with learning programming and increase
students’ motivation to learn programming. Therefore, teaching
environments developed especially for educational purposes are
often used in education instead of professional programming
environments and languages that are too complex for beginners.

Many educational programming environments use visual block-
based program notation, which is considered more suitable for
novice programmers than textual programming. João et al.
(2019) present a cross-analysis of the core characteristics of 26
block-based and visual programming environments used in
teaching computational thinking and programming. The
overview presents wide range of visual programming
environments suitable for age categories from preschoolers to
high school students.

However, Deng et al. (2020) remind the fact that block-based
programming is less authentic and less functional than text-based
programming, and therefore, block-based programming alone
might not be enough for students to understand the real meaning
of programming and may have a negative impact on their future
studies in computer science. Noone et al. (2021), at the same
time, point out that there exists a gap in the education of students
in their mid-to-late teenage years, when perhaps visual
programming languages are no longer suitable, but textual
programming languages may involve excessive learning effort.

While visual programming is considered to be more
advantageous choice for novice programmers (Attard and
Busuttil, 2020; Deng et al., 2020; Weintrop and Wilensky,
2017), various studies address the process of transition from
visual to textual programming for intermediate and advanced
students (Cheung et al., 2009; Krpan et al., 2017; Noone et al.,
2021; Vega and Cañas, 2019; Weintrop and Wilensky, 2019).

This article explores one implementation of a transition from
visual to textual programming in the context of mobile
application development, which uses hybrid environment for
bridging the gap between visual and textual programming, and
answers the following research questions (RQs):

- 337 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

RQ1: How does performance of intermediate teenage
programmers in the field of creating mobile applications differ
according to the way of programming (visual, hybrid, textual)?

RQ2: How do teenagers' attitudes toward learning programming
in visual and textual way differ according to age and
programming skills?

In our implementation, MIT App Inventor visual programming
environment, Java Bridge Code Generator hybrid environment,
and Android Studio with Java Bridge Library textual
programming environment are used during informal
programming course for teenage students with previous
programming experience.

2 Ways of Code Creating

2.1 Visual Programming

In visual programming, the programming is performed using a
visual programming language and a visual programming
environment. The visual programming language is made up of
pre-prepared graphic elements. Each graphic element represents
a certain part of the programming language – individual
commands, programming concepts (e.g., command to create a
variable, loop, condition). The graphic elements also use a
higher degree of abstraction, thanks to which even more
complex functions can be encapsulated in one graphic block.
Therefore, the programmer does not need to know how the
function is implemented in order to be able to work with it
(Paternò and Santoro, 2019).

Programming is done by combining pre-prepared graphic
elements. Graphic elements (also called blocks) are usually
connected in a drag & drop way – the programmer takes a
specific block from the palette (block menu) and moves it to the
canvas (desktop). So, it is not necessary for the programmer to
memorize commands (Krpan et al., 2017; do Nascimento et al.,
2019; Weintrop, 2015). When connecting graphic blocks, it is
defined which blocks can be and which cannot be connected to
each other. This is usually ensured in programming
environments by using the principle of jigsaw puzzle, where the
graphic blocks have a shape like parts of a puzzle (Hsu, Ching,
2013; Musmarra, 2018; Paternò and Santoro, 2019). It makes
joining blocks more intuitive (Weintrop and Wilensky, 2019).

If two blocks cannot be joined into the syntactically correct form
of the expression, the programming environment prevents them
from being joined. It is a prevention of syntactic errors (Hsu,

Ching, 2013; Koorsse et al., 2015; Weintrop and Wilensky,
2018). The shape of graphic block is also a hint of how many
connections with other blocks can be made in terms of inputs as
well as outputs of the given block (Paternò and Santoro, 2019).
Weintrop (2015) states that although visual programming
environments prevent the creation of syntax errors, overall, they
do not solve this problem, but only delay it to later periods of
programming in other textual programming languages.

Visual programming and visual programming environments are
currently popular especially in teaching the programming
fundamentals. Their use is successful in involving students in
programming activities and providing a sense of success in the
early stages of learning to program. Such languages are mainly
used for the development of algorithmic thinking. Examples of
visual programming languages and environments are Scratch,
MIT App Inventor 2 and Alice. An overview of pros and cons of
visual programming is presented in Table 1.

2.2 Textual Programming

In textual programming, the programming is performed by
writing text and with using textual programming environments.
A textual programming language is a programming language
which consists of a set of instructions that are in the textual
form. All textual programming languages have their own syntax
rules. In the case of this type of programming languages, the
creation of semantically and syntactically correct code is not
ensured by such mechanisms as in the case of visual
programming languages. This fact increases the complexity of
programming. Unfortunately, some errors in the text code may
be reflected in the incorrect functionality of the program, or the
program may not even be compiled and run, unlike visual
programming, where the wrong code essentially cannot be
created. Such situations require extra effort and time to properly
identify the error in the program and resolve it. Therefore,
textual programming languages can be challenging for the
students. For novice programmers the complexity of textual
programming and the number of commands is often limiting in
creating algorithms. However, the disadvantage of more
demanding program creation can be overcome by students’
feeling that they are working with a professional tool. Students
can gain an authentic programming experience. Such
programming opportunity may be interesting for students with
greater expectations and needs (Garneli et al., 2015; Mladenović
et al., 2018). Examples of textual programming languages are
Python, Java, and C#. An overview of pros and cons of textual
programming is presented in Table 2.

Table 1 Pros and cons of visual programming

Pros Cons
 Easy to start creating functional programs Deteriorating readability / comprehensibility of the

program with increasing program complexity
 A large amount of knowledge is not required (general about

programming, to memorize commands)
 Limited options of program creating (some features or

options may not be available)
 Intuitiveness of program creating by joining blocks

(prevention of syntax errors as well)

 The graphic nature increases the intelligibility
of the elements

 Immediate feedback
 Simplified error detection
 Attractiveness for students (it consists in the interactivity of

programming environments, in the use of multimedia
elements and in the thematic focus)

Table 2 Pros and cons of textual programming

Pros Cons
 More suitable for creating more complex programs More difficult to understand for beginners
 The readability of the program can be maintained even with

its increasing complexity
 Requires more knowledge (general about programming,

know commands, syntax)
 More options for creating a program (the programmer is not

as limited as in the case of a visual programming language)

- 338 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

2.3 Hybrid Programming

The meaning of the term hybrid programming in the context of
this article cannot be confused with the meaning of this term in
context of cross-platform mobile app development (the
application is developed for several operating systems at the
same time) nor with the term in context of multi-paradigm
programming languages (programming languages based on more
than one programming paradigm). In the connection with visual
and textual programming, hybrid programming is a such way of
programming where the students use both elements of visual
programming and textual programming. The student can create
program by joining graphic blocks, while the visual code can be
translated into an equivalent textual form and the textual code
can be modified and expanded by writing text – program
instructions in textual form.

It is usually used in the student’s transition from visual to textual
programming as an intermediate step between these two ways of
programming. Students can better create mental connections
between these two contexts (visual and textual programming) by
using both ways of programming at the same time and working
with visual and textual representation of the same program. The
aim is to make this transition easier for students, to make it
smoother and to prevent various difficulties, which are
associated with the transition (Tóth and Lovászová, 2018). An
overview of pros and cons of hybrid programming is presented
in Table 3.

Table 3 Pros and cons of hybrid programming

Pros Cons
 Possibility to work with

visual and textual
programming

 Requires knowledge
of visual as well as
textual programming

 Helping to create mental
connections between
visual and textual
programming

 Greater complexity of
program creation due
to the use of two ways
of programming

 Simplifying the student’s
transition from visual to
textual programming

Examples of hybrid programming languages, environments, or
tools which support hybrid programming are:

 Java Bridge – uses visual programming of mobile

applications on the principle of MIT App Inventor 2 and
textual programming in the Java programming language
(App Inventor (a), n.d.),

 PencilCode – allows to create and edit code in a textual way
and at the same time with graphic blocks (Alrubaye, 2019)

 Pencil.cc – an environment that allows the creation of
isomorphic code by visual and textual programming
(Weintrop and Wilensky, 2017),

 PyBlockly – the environment based on the principle of turtle
graphic; it uses visual programming language and textual
programming language Python (Strong et al., 2018),

 BrickLayer – allows to visually create programs for Arduino
microcontrollers platform and the code is translated into the
textual programming language C (Cheung, 2009).

3 Materials and Methods

3.1 Implementation Process

Based on the defined research questions, we carried out research
in the field of teaching mobile application programming in
secondary education. For this purpose, a leisure course of mobile
application programming was organised. Applications were
created for operating system Android. The research was
conducted during the school year 2018/2019. The course took
place once a week and comprised two school lessons (total of 90
minutes). The course was led by one lecturer, who was also in
the role of researcher. All conceptual and teaching issues were
consulted with expert researcher.

The intention of the course was also to allow students to
program in all three ways of programming. The aim was to
verify the suitability of the implementation of these
programming ways in secondary education and their impact on
the effectiveness of education. The course schedule was divided
into three stages:

1. Visual programming stage

 students use visual programming in visual programming

environment,
 education is focused on basic programming concepts,
 getting to know the programming environment and gaining

the first experience in creating mobile applications by visual
programming.

2. Hybrid programming stage

 first, students use visual programming in visual

programming environment,
 subsequently, students generate equivalent text code from

the code in the form of graphic blocks,
 the generated text code is transferred to the textual

programming environment,
 education is focused on getting to know the text equivalent

of an already known program previously created by visual
programming, getting to know the new used tools, textual
programming environment and textual programming
language,

 students experiment with minor modifications of the code
by textual programming (e.g., changing the arguments of
commands), analogically extend the code by textual
programming according to the already generated textual
code,

 gaining the first experience with development in a textual
programming environment.

3. Textual programming stage

 students use textual programming in textual programming

environment,
 pointing to the analogy with programming in visual

programming environment; techniques of mediated
knowledge transfer from one context to another one are used
too (Perkins and Salomon, 1988; Perkins and Salomon,
1992).

The order of the stages was deliberately chosen. Visual
programming is easier to get started, so it was included in the
first stage. The direct transition from visual to textual
programming can be accompanied by various challenges, so the
stage of hybrid programming has been inserted between visual
and textual programming stage as an intermediate step. The
design of the transition strategy from one way of programming
to another one is dealt in more detail in (Tóth and Michaličková,
2018). In each stage, students worked on three projects (Table
4). The difficulty of projects increased during the stage.

- 339 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Table 4 The course schedule

Stage 1. Visual programming 2. Hybrid programming 3. Textual programming
Project Hello

World
(V1)

Catch the
Egg
(V2)

Project
(V3)

Hello
World
(H1)

ChatBot
(H2)

MoleMash
(H3)

Hello,
Purr
(T1)

Roll the
Dice
(T2)

Project
(T3)

Duration (number
of lessons)

1 3 5 3 3 3 1 2 5

Complexity Simple Simple/
Complex

Complex Simple Simple/
Complex

Complex Simple Simple Complex

In addition to the personal assistance of the lecturer, the students
had available short handouts as another assistance tool. The
handouts contain application instructions, such as application
functionality requirements, a preview of the application
graphical user interface (GUI), an outline of the solution in form
of subtasks and others. The purpose of using short handouts as
learning material was also to support students in active
independent work on projects. At the same time, it allowed
differentiation according to students’ abilities.

Students could demonstrate independence at work especially by
solving individual projects. The creation of individual projects
was included at the end of the stage of visual and textual
programming. The topic of the individual project was chosen by
the students in both stages. By creating the individual project,
students had to prove what they learned in the previous period
and what application they are able to create independently.
Unlike the previous created applications, during the lessons on
which the students worked on their own individual projects, they
did not have a formal description of the final product and sketch
of the solution. The assignments of individual projects were
formulated in such way to provide maximum space for students
for their own creativity and creation. During the application
creation they had to analyse the problem, design the structure of
the application and design how to implement its functionalities.

3.2 Participants

The research is carried out with a small group of participants, in
which examined elements are recorded in detail and analysed.
The research sample consists of 14 secondary school students.
13 students were male and one female. Students' age range were
from 12 to 18 years.

In order to determine students' attitude to programming, the
range of programming experience, and knowledge of basic
programming concepts, an entry questionnaire was prepared.
The students’ answers show that:

 Students have a positive attitude towards Informatics and

programming. They attended our programming course in their
leisure time. Their increased interest in programming is also
evidenced by the fact that 86% of students stated that they enjoy
programming very much and the remaining 14% stated that they
enjoy programming a bit. 57% of students stated that they would
like to devote to programming at a professional level in the
future.

 All students already had programming experience. Half of the
students program one or two years. Students already had
experience mostly with educational programming environments
and languages such as Imagine Logo, Scratch, Python
and Baltík. Four students also had experience with MIT App
Inventor 2, two students had experience with the Java
programming language and one student had experience with
Android Studio. No student in the research sample had
experience with Java Bridge. Some students also had experience
with programming tangible construction kits and robotics (e.g.,
Lego Mindstorms, Micro:bit, Sphero, Ozobot) and four students
also had some experience with programming mobile devices.

 Students are familiar with several terms in the field of
algorithmic structures (loop, conditions, procedure, library),
work with data (variable, parameter, constant, data type), object-
oriented and event-driven programming (class, object, event,
component). The level of conceptual understanding was not
ascertained.

3.3 Instruments

The focus on programming mobile applications also influenced
the choice of programming environment for the stages. For each
of the three stages, we chose environment which allows mobile
application programming and at the same time it allows
programming in the way specified for the stage. The selected
tools can be divided according to the stage in which they were
used:

1st

 stage: MIT App Inventor 2 (MIT AI 2)

 visual programming environment for creating applications
for mobile devices with operating system Android,

 hides the complexity of development and allows the student
to focus on the design GUI of application, its functions and
how the user will work with it.

2nd

 stage: Java Bridge (Java Bridge Code Generator)
and Android Studio

 under the term Java Bridge is distinguished Java Bridge
Code Generator and Java Bridge Library,

 Java Bridge Code Generator is an exploratory version of the
programming environment MIT AI 2 that allows students to
create an application just like in programming environment
MIT AI 2 (by visual programming) and then generate an
equivalent textual version of the application code in the
programming language Java (App Inventor (b), n.d.),

 Android Studio is used to view and edit the generated code.

3rd

 stage: Android Studio, Java and Java Bridge (Java Bridge
Library)

 Android Studio is a professional textual programming
environment for creating mobile applications for the
operating system Android,

 Java is a programming language for programming mobile
applications for the operating system Android,

 Java Bridge Library is a library of programming language
Java,

 Java Bridge Library uses the same terminology as is used
in MIT AI 2 – there is a Java class for each component – the
class encapsulates the complexity of functionality just like
in MIT AI 2,

 Java Bridge Library in this way facilitates textual
programming of mobile applications for operating system
Android than it is with standard way using Android SDK
(App Inventor (b), n.d.).

3.4 Data Collection and Data Processing

Several research methods were used for data collection:
questionnaires, problem-solving interviews, informal interviews
with students, focus groups, participatory observation,
unstructured observation, field notes and product collection
(student-created applications).

Using these data collection methods, we obtained data which
were processed by qualitative and quantitative methods.
Therefore, some qualitative data were quantified (converted to
numerical form). We obtained data of three types:

- 340 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

1. data obtained from observations and interviews

 converted into text in the form of protocols,
 texts were analysed and processed by categorization and

coding,

2. data obtained in textual form from questionnaires

 entry questionnaire implemented using online Google Forms

about students' attitudes, motivations, and their aptitude for
programming

 questionnaires during lessons implemented using Socrative
audience response software with instant feedback after each
question used to:
• verify student’s knowledge and understanding of the

crucial concepts,
• get continuous feedback on students’ attitude to the

content and the form of lessons
 final questionnaire implemented using online Google Forms

containing questions on self-assessment and on attitudes to
the programming tools and approaches used.

3. data obtained in the form of collected products – applications’

source codes created by students

 to verify the student’s mastery of the problem and to

identify problematic parts of its solution,
 the source codes were uploaded to the cloud storage Google

Disk by the students for making them available to the
lecturer,

 the source codes were analysed, and the obtained data were
quantified into:
• difficulty score – the sum of programming difficulty

(the number of essential activities related to designing
and coding) and technical difficulty (the number of
essential activities related to the project development
in the programming environment and to building the
application),

• solution success rate – the extent of learning
objectives defined for the project achieved by student,

• weighted performance – students’ performance in
solving projects; evaluated on the basis of difficulty
score and solution success rate.

Collected data was coded by two researchers and analysed
through discussion.

4 Results

The achieved results are divided into results obtained from
subjective data (from observations and expressions of students)
and into results obtained from objective data (from the analysis
of submitted products).

4.1 Results from the Evaluation of Subjective Data

Results from subjective data are evaluated according to the
defined stages.

4.1.1 Stage of Visual Programming

The visual programming environment MIT AI 2 did not cause
problems for the students. The students advanced quickly. They
were able to solve tasks independently. Thanks to the handouts,
students were able to work at their own pace. They were able to
perform at the level of Creativity of the Revised Bloom’s
Taxonomy already during the creation of the applications which
were created by students together with the lecturer. The students’
activity increased even more in solving individual projects. They
worked creatively and, in addition, improved the applications
with various personal ideas. Errors in the program occurred only
occasionally, mainly related to the application logic.

The mobile applications development in MIT AI 2 was enjoyed
by students. The students presented their experience with MIT

AI 2 as positive, what is also confirmed by the students’ verbal
statements:

Student12: „I like that it was quite easy to program there (in
MIT AI 2).“

Student14: „I liked the ease with which applications could be
created.“

Student4: „I liked it, I’m glad I learned how to program
applications in App Inventor.“

Students’ interest in programming using MIT AI 2 is also
confirmed by other students’ statements. A total of 85.7% of
students stated in the final questionnaire that they programmed
applications in MIT AI 2 on their own initiative at home as well.

Most students feel confident developing mobile applications in
MIT AI 2. A total of 75% of students answered that they can
create applications in MIT AI 2 and no student stated that they
cannot create applications (Table 5). The connections of the
answers with the students’ age were not recorded in this case.

While working with MIT AI 2, the students gradually
encountered several limitations in programming the application
functionality or creating GUI, such as the inability to
dynamically create GUI components, or limited options for
setting up components. In addition, students began to express
feelings and opinions that MIT AI 2 is already easy for them:

Student9: „App Inventor is so childish.“

The students were interested in moving even further forward in
programming, including by moving to another programming
environment:

Student1: „It was a nice introduction to mobile application
programming, but it’s time to move on.“

4.1.2 Stage of Hybrid Programming

Thanks to the handout, students were able to work independently
at this stage too. Some students solved all the tasks and
programmed the application according to the instructions from
the handout even without the lecturer help. A few students even
expanded the application with more similar features.

The students also did well with programming in Android Studio,
even though they did not know the meaning of each line of Java
code. They were able to solve tasks logically and analogously
according to the already existing code and their previous
experience and knowledge. We also noticed a positive attitude
from the student’s statement:

„It looks complicated, but it’s quite easy to understand.“

The youngest students aged 12 and 13 progressed the slowest.
The greatest progress was made by Student7 (16 years old). This
student was so successful in textual programming that he did not
even use the Java Bridge Code Generator and he did not program
in hybrid way. He programmed using just textual programming
and Java Bridge Library. Later, several other students gradually
joined this student. Student7 explained his action by saying that
creating an application using textual programming does not
cause him a problem. On the contrary, the combined work with
visual and textual programming environment is delaying.

Syntactic errors did not occur much at this stage. Only the
youngest student had the biggest problems with syntactic rules.
The most common problems were technical:

 Problems related to project as an application structure –

students had difficulty understanding the nature of using the
project as a whole covering different parts of the application
(e.g., problem to distinguish where to insert images within

- 341 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

the folder structure of the project, problem to distinguish
between the meaning of the project and the Java file).

Table 5 Students’ subjective evaluation of the degree of mastery of mobile applications creating in MIT AI 2

Degree of mastering the
creation of mobile apps in

MIT AI 2

Likert
scale
(LS)

Number of students by age
Total Average

age 12 13 14 15 16 17 18

I handle it very well 2 0 0 1 1 0 0 0 2 (25%) 14.5
I can handle it 1 1 0 1 0 1 1 0 4 (50%) 14.8

Undecided 0 0 1 0 0 0 0 1 2 (25%) 15.5
I cannot handle it -1 0 0 0 0 0 0 0 0 (0%) N/A

I cannot handle it at all -2 0 0 0 0 0 0 0 0 (0%) N/A
Average answer (LS) 1.0 -

 Problems related to Java code structure – to which specific

place in the Java code student should write the new code (it
is necessary to be aware of the code structure, ranges of
code parts (enclosed in curly brackets {}), but also which
parts of the code refer to each other (which methods are
called and from which part of code are called)). These
problems occurred mainly in the case of the three youngest
students.

The students began to feel frustration and demotivation due to
higher incidence of errors and the need to resolve them.
Debugging errors of various kinds required much more time and
more attention of students at this stage. The development of the
application was no longer so smooth and linear. The help of a
lecturer was more necessary.

Despite these difficulties students expressed a positive attitude
towards the Java Bridge Code Generator in their final
assessment (Table 6). The connection of the answers with the
students’ age was not recorded in this case.

The students positively commented Java Bridge Code Generator,
but they also were able to critically evaluate it:

„I liked that the Java code could be generated.“

„I could help myself if I couldn’t program something in Java.“

„Easy transfer of the code to other programming
environments, but I lack the ability to run it quickly (build, run
and test application).“

„I didn’t like that the code generation feature wasn’t working
as it should and you still need to modify the application code
to work.“

When asked whether the code generation was helpful for
students together more than half of the students (57.2%) gave a
positive answer (Table 7).

4.1.3 Stage of Textual Programming

Already during the transition to textual programming of mobile
applications, students had positive expectations. Students again
became more successful in application development. In contrast
to the end of the second stage, where there were feelings of
frustration and demotivation, in the third stage, the students
began to make a positive impression again. All students
managed the first application without major problems.
Essentially, the students were able to work independently
according to the handout. However, there were bigger
differences in their pace of work. Some students also worked at
home in their own initiative according to handout (stated by 50%
of students in questionnaire).

If necessary, students also helped themselves using Java Bridge
Code Generator and hybrid programming at this stage, especially
when solving individual projects (T3) – stated by total of 42.9%
of students in final questionnaire (Table 8).

They used Java Bridge Code Generator mainly in case of:

 GUI creation – for more convenient GUI creation visually

using virtual screen than textually using the Java Bridge
Library in Android Studio,

 if they forgot how to write the command – e.g., what the
command syntax for defining the event listener looks like.

Table 6 Students' evaluation of their attitude to Java Bridge Code Generator

Students’ attitude to Java
Bridge Code Generator

Likert
scale
(LS)

Number of students by age
Total Average

age 12 13 14 15 16 17 18

Great tool 2 0 2 0 2 0 1 1 6 (43%) 15.2
Good 1 0 0 0 1 1 1 0 3 (21%) 16.0

Undecided 0 1 0 0 0 0 0 1 2 (15%) 15.0
Poor -1 0 0 2 0 1 0 0 3 (21%) 14.7

Very bad tool -2 0 0 0 0 0 0 0 0 (0%) N/A
Average answer (LS) 0.9 -

Table 7 Students' evaluation of rate of help provided by code generation

Rate of help provided by
code generation

Likert
scale
(LS)

Number of students by age
Total Average

age 12 13 14 15 16 17 18

Definitely helpful 2 0 1 0 1 1 2 1 6 (42.9%) 16.0
Rather helpful 1 0 1 1 0 0 0 0 2 (14.3%) 13.5

Neither yes nor no 0 0 0 0 2 0 0 0 2 (14.3%) 15.0
Rather not helpful -1 1 0 0 0 1 0 1 3 (21.4%) 15.3
Not helpful at all
(it is not needed) -2 0 0 1 0 0 0 0 1 (7.1%) 14.0

Average answer (LS) 0.6 -

- 342 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Table 8 Students' evaluation of the frequency of helping with the code generation during textual programming of individual project (T3)
The frequency of helping with

the code generation during
programming of individual

project (T3)

Likert
scale
(LS)

Number of students by age
Total Average

age 12 13 14 15 16 17 18

Often 2 0 0 0 0 1 1 0 2 (14.3%) 16.5
Occasionally 1 0 0 1 1 0 1 1 4 (28.6%) 16.0
Undecided 0 0 0 0 0 0 0 0 0 (0%) N/A

Rarely -1 1 1 0 0 0 0 0 2 (14.3%) 12.5
Never -2 0 1 1 1 0 0 0 3 (21.4%) 14.0

I did not program T3 - 0 0 0 1 1 0 1 3 (21.4%) 16.3
Average answer (LS) 0 -

A greater connection with the students’ age was recorded in this
case – especially younger students said they did not help
themselves by generating code – some were discouraged by the
complexity of using two programming environments, for others
such work was delaying.

The students faced several challenges when programming
mobile applications in textual way compared to visual
programming:

 Work also at the level of the file and folder structure of the

project – it was no longer enough to work only at the level
of creating the code (e.g., creating a screen consists not only
of creating the screen as a logical element in the code, but
also as a file).

 Work with multiple files at once – when implementing some
functions of the application, it is necessary to intervene in
the code of several project files (e.g., add vibration
command in .java file and add vibration permission in
AndroidManifest.xml).

 Work with files in multiple formats – students worked with
.java, .xml files and with media of various formats during
the development.

 GUI creation in textual way – GUI is not created with Java
Bridge Library in visual way by moving components to the
virtual screen of the device using drag & drop method; GUI
is created by writing textual code within a .java file.

 Syntax of the programming language – students must know
and consciously follow the syntactic rules of the
programming language.

 Writing code directly – there is no such pallet of
components and blocks as in MIT AI 2, from which students
would just choose and compose a program.

 Creating responses to the events – multi-step
implementation requiring code to be written to multiple
locations within the code structure of the .java file.

 Working with data types – when creating variables and
objects, it is necessary to define their data type.

The errors that most often occurred to students during
programming at this stage can be categorized as follows:

 problem with application building due to the use of different

physical devices for testing by students (need for proper
configuration of the build),

 omission of some part of the implementation of the event
response or incorrect definition,

 adding a command to the wrong place within the structure
of the .java file, or due to the semantic meaning of the
commands (e.g., adding a command to open a new window
to the part of another method where the method parameters
should be written) or with respect to the chronological
execution of the code (e.g., first the action was performed

according to the generated number and only then the number
was generated, or the use of a component that was only
declared and not initialized),

 syntactical errors (e.g., missing semicolon, brackets, etc.) –
already higher incidence than in the previous stage.

Despite several complications and a higher incidence of errors
during the third stage of textual programming, in the end, the
students were not dominated by negative feelings or attitudes to
textual programming in Android Studio. Their feeling and
attitudes were exactly the opposite. For example, although
working with a project at the level of its folder structure
appeared to be problematic for students during the application
creation, only one student confirmed this in final questionnaire.
A total of 64.3% of all students said that working with the
project is not difficult. Most students do not even find textual
programming in Android Studio difficult at all (Table 9).

Similarly, the students expressed a positive self-assessment of
their ability to create applications by textual programming in
Android Studio using Java Bridge Library. 35.7% of students
stated that they can create an application in Android Studio
completely independently. The students most often stated that
they can create the application with the help of more experienced
person (e.g., a teacher) (57.1% of all students stated this), with
the help of internet (50%), with the help of the handout (42.9%)
and with the help of code generation (42.9%). None of the
students stated that he/she is not able to create application in
Android Studio.

Similarly, the students expressed a positive self-assessment of
their ability to create applications by textual programming in
Android Studio using Java Bridge Library. 35.7% of students
stated that they can create an application in Android Studio
completely independently. The students most often stated that
they can create the application with the help of more experienced
person (e.g., a teacher) (57.1% of all students stated this), with
the help of internet (50%), with the help of the handout (42.9%)
and with the help of code generation (42.9%). None of the
students stated that he/she is not able to create application in
Android Studio.

In addition, half of the students stated that textual programming
suited them best and on the contrary, no student stated that the
visual programming suited him/her best (Table 10). The
distribution of the answers is not related to age.

Due to this subjective perception of students, students stated that
they would welcome even more opportunities to deal with
textual programming in programming language Java and even
without using the Java Bridge Library.

Table 9 Students' difficulty evaluation of textual programming in Android Studio

Difficulty of textual
programming in Android

Studio

Likert
scale
(LS)

Number of students by age
Total Average

age 12 13 14 15 16 17 18

Very easy 2 0 0 1 0 1 0 0 2 (17%) 15.0
Rather easy 1 0 0 1 1 0 0 0 2 (17%) 14.5

- 343 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Neither easy nor hard 0 0 2 0 1 1 2 1 7 (58%) 15.6
Rather hard -1 1 0 0 0 0 0 0 1 (8%) 12.0
Very hard -2 0 0 0 0 0 0 0 0 (0%) N/A

Average answer (LS) 0.4 -

Table 10 Students' evaluation of their affection for a specific way of programming
Students’ affection for a specific way

of programming
Number of students by age Total Average

age 12 13 14 15 16 17 18
Textual 1 1 2 1 1 1 0 7 (50%) 14.4
Hybrid 0 1 0 1 0 1 1 4 (28.6%) 15.8
Visual 0 0 0 0 0 0 0 0 (0%) N/A

Undecided 0 0 0 1 1 0 1 3 (21.4%) 16.3

4.2 Results from the Evaluation of Objective Data

Based on a detailed analysis of data in the form of submitted
products (programming projects created by students), we have
achieved the results of objective evaluation of students. In terms
of the difficulty score, the following facts can be observed
(Table 11):

 the projects in the 2nd stage had the highest average score of

the total difficulty and to lowest in the 3rd

 the projects in the 2
 stage,

nd stage had the highest technical
difficulty score and the lowest in the 1st

 the projects in the 1
 stage,

st stage had the highest programming
difficulty score and the lowest in the 3rd

 stage.

In terms of the average weighted performance of students
(Figure 1), it can be stated:

 students on average reached the highest value of the average

weighted performance in the 1st

 at the beginning of each stage, it is possible to observe an
increase in weighted performance; the most significant
increase was at the beginning of the 1

 stage and the value
decreased with each subsequent stage (0.83 → 0.72 →
0.62),

st

 the average weighted performance in the individual project
in the 1

 stage; the increase at
the beginning of the stage decreases with each subsequent
stage,

st stage (V3) is greater than in the case of the
individual project in the 3rd

 stage (T3).

Taking a more detailed look at the distribution of students’
weighted performance in creating individual projects in the first
(Table 12) and the third stage (Table 13) according to age, we
can observe that there are no significant age differences in
student performance when programming in App Inventor. In
contrast, when programming in Android Studio, the weakest
performance is reached by the three youngest students.

Graph 1 Average weighted performance of students during
creating applications

5 Discussion

Based on the obtained results, we formulate answers to the
research questions.

RQ1: How does performance of intermediate teenage
programmers in the field of creating mobile applications differ
according to the way of programming (visual, hybrid, textual)?

Results showed that students achieved the highest average
weighted performance in the visual programming stage. At this
stage, students also made the most significant progress (the most
significant increase of average weighted performance) of all
three stages (Figure 1). These factors have a positive effect on
students’ sense of success in mobile application programming.

Table 11 Difficulty score of projects in the visual, hybrid, and textual stage

Project identifier
1st stage (visual) 2nd stage (hybrid) 3rd stage (textual)

V1 V2 V3 H1 H2 H3 T1 T2 T3
Programming difficulty 8 17 17.2 9 10 15 7 10 10.9
Technical difficulty 7 5 4.8 10 11 13 8 8 7.1
Total difficulty 15 22 22 19 21 28 15 18 18
Average difficulty 19.67 22.67 17.00

Table 12 Weighted performance of students in individual projects V3

Weighted performance
in V3

Number of students by age
Total Average age

12 13 14 15 16 17 18
1.50 – 1.21 0 0 1 0 0 0 0 1 (7%) 14.0
1.20 – 0.91 1 0 0 0 0 1 0 2 (14%) 14.5
0.90 – 0.61 0 0 1 2 1 1 1 6 (43%) 15.8
0.60 – 0.31 0 2 0 0 0 0 1 3 (22%) 14.7
0.30 – 0.00 0 0 0 0 0 0 0 0 (0%) N/A

no rating (not submitted) 0 0 0 1 1 0 0 2 (14%) 15.5

- 344 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

Table 13 Weighted performance of students in individual projects T3
Weighted performance

in T3
Number of students by age

Total Average age
12 13 14 15 16 17 18

1.50 – 1.21 0 0 0 1 0 0 0 1 (7%) 15.0
1.20 – 0.91 0 0 1 0 0 0 0 1 (7%) 14.0
0.90 – 0.61 0 0 0 0 1 0 1 2 (14%) 17.0
0.60 – 0.31 0 0 0 0 0 1 0 1 (7%) 17.0
0.30 – 0.00 1 1 1 0 0 0 0 3 (22%) 13.0

no rating (not submitted) 0 1 0 2 1 1 1 6 (43%) 15.6

Students had a high level of self-confidence in visual
programming – no student stated that he/she cannot create
applications in MIT AI 2. The created applications in this stage
had the lowest technical difficulty score and, conversely, the
highest programming difficulty score (Table 11), which indicates
a low workload of students with technical aspects of the
development and high degree of programming skills to work in
this way. Students were able to focus mainly on programming
itself and not on the technical aspect of development. These
results are consistent with the statements of other researchers
that are presented in the chapter Ways of Code Creating. Visual
programming enabled students to make great use of their own
creativity in creation. Looking at the results of creating
individual projects, which reflect the level of students’ ability to
independently create an application in a specific way of
programming, we can see that students also achieved the highest
degree of independence in visual programming – the average
weighted performance in projects V3 is higher than in T3
(Figure 1).

During hybrid programming, there were greater differences
between students in their ability to move forward and create
applications in this way. Students’ performance was also
negatively affected by the fact that the applications created at
this stage had the highest difficulty score. Especially the
difficulty of technical aspect of the solution increased (the
highest technical difficulty score) – also caused by using two
programming environments simultaneously. Despite the greater
incidence of difficulties in hybrid programming than in visual,
the most students subjectively rated the Java Bridge Code
Generator positively (Table 6). Students marked code generation
as helpful in creating applications and no correlation between
responses and students’ age was recorded (Table 7).

Textual programming was a challenge for students. Higher
complexity of creating applications was reflected in:

 the lowest achieved difficulty score of created applications

(Table 11),
 the lowest achieved average weighted performance (Figure

1),
 more significant differences between students in weighted

performance during their independent work in T3 than V3
(Table 12 and Table 13),

 lower achieved weighted performance in the case of projects
T3 than V3 for each student (with one exception).

While visual programming was mastered by all students,
regardless of their age, in textual programming it is not possible
to say so clearly. The weakest results were achieved especially
by the youngest students with least experience.

Our findings that students performed better in visual than in
textual programming are consistent with previous studies in
sense that students who use block-based programming tools
outperform the students who use textual programming tools
(Deng et al., 2020; Weintrop and Wilensky, 2017].

RQ2: How do teenagers' attitudes toward learning programming
in visual and textual way differ according to age and
programming skills?

Despite the results that students' learning outcomes in visual
programming was better than that in textual programming, the

subjective perception of benefits of visual programming by
students was not so definite regardless of students' age and
programming skills:

 although working with the project at the level of the folder

structure appeared to be problematic, the students did not
confirm such a perception with their own statements – only
one student stated it as difficult,

 students do not find textual programming in Android Studio
difficult – only the youngest student commented that it is
difficult (Table 9),

 none of the students said that he/she cannot create the
application in Android Studio,

 50% of students said that they were most comfortable with
the textual way of programming in Android Studio (no
student mentioned visual programming in MIT AI 2) (Table
10).

These findings are in compliance with Weintrop and Wilensky
(2017) who found no difference between students learning in
block-based and text-based conditions with respect to confidence
or enjoyment. Comparably to our results, authors report that
students who program in textual way considered their
programming experience as more similar to what professional
programmers do and as more effective at improving their
programming abilities. Our results are also in line with teachers'
experience and views investigated by Attard and Busuttil (2020)
that using an interface such as App Inventor would attract
students immediately due to its visual nature as opposed to text-
based languages such as Java, but could be too limited for
intermediate and advanced learners.

The motivation to program in a hybrid way was mainly to help
with the textual programming. On the other hand, especially
younger students were discouraged from such assistance by
more complicated combined work with two programming
environments simultaneously (Table 8). The motivation of
students to program in a hybrid way also decreased with the
acquired experience of students – the work with the two
environments simultaneously was delaying for students. A
different result could be recorded in the case of using a
mediation tool, in which the possibility of programming in a
visual and textual way is integrated within one programming
environment.

Textual programming of mobile applications in professional
programming environment Android Studio proved as a great
challenge for students. Already during the first stage of visual
programming, students expressed interest in the transition to
such more professional way of programming. Despite the weaker
measured objective results of students in textual programming,
the positive subjective perception of their work persisted. This
can be attributed to the high degree of motivation to create
applications in this way regardless of age. This result coincides
with the result achieved in our antecedent exploratory research
(Tóth and Lovászová, 2018). In addition, students were
motivated to continue textual programming of mobile
applications even without the Java Bridge Library as assistance
tool.

The following limitations should be considered when
interpreting the results:

- 345 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

 Selection of research sample – a smaller number of
participants allowed us to focus on a deeper understanding
of the observed phenomenon. On the other hand, it is not
possible to generalize the results to all students of secondary
education. The research sample consisted of a selection of
students with an increased interest in computer science and
programming. In the case of a common sample of students,
the results could deviate from ours.

 Choice of textual programming language and programming
environment – to create mobile applications for the
operating system Android, the Java programming language
and the professional programming environment Android
Studio were chosen. Choosing a programming language and
programming environment more appropriate for teaching
introductory programming could also affect results.

6 Conclusion

The aim of the article is to assess which way of programming,
visual or textual, is appropriate for intermediate and advanced
learners in the context of creating mobile applications. A case of
teaching programming within the extracurricular course intended
for students interested in creating mobile applications has been
presented and studied. Based on the qualitative analysis of
source codes, students' performance in visual, hybrid, and textual
way has been evaluated. Furthermore, students' attitudes to the
used ways of programming have been examined too.

The results showed that students were able to achieve better
performance using visual programming than the other two ways
of programming regardless of their age. In the case of textual
programming, students' performance differed according to age.
The weakest performance was achieved especially by the
youngest students with the least experience. Regarding attitudes
toward the way of programming, all students declared positive
perception of textual programming in Android Studio despite
many challenges they had to overcome. Hybrid visual/textual
programming was used in order to help the transition between
visual and textual programming. However, besides positive
aspects of using hybrid tool in helping to generate textual code,
combined use of two programming environments simultaneously
during hybrid programming was perceived by students as
complicated and delaying.

In the future, replication of this research under modified
conditions may contribute to the problem of determining the
appropriate way of learning programming mobile applications.
The proposed modification of conditions is using a more
comfortable programming tool with integrated visual and textual
programming at the same time, which prevent difficulties with
the complicated use of several tools at the same time.
Furthermore, replication with a sample of students from
common class would yield valuable results for the area of formal
secondary education.

Literature:

1. Alrubaye, H., Ludi, S., Mkaouer, M.W.: Comparison of
Block-Based and Hybrid-Based Programming Environments in
Transferring Programming Skills to Text-Based Environment. In
CASCON '19: Proceedings of the 29th Annual International
Conference on Computer Science and Software Engineering,
100-109.
2. App Inventor (a): App Inventor Java Bridge. Available online:
http://www.appinventor.org/jbridge.
3. App Inventor (b): Java Bridge Programming. Available
online: http://www.appinventor.org/jBridgeIntro.
4. Attard, L., Busuttil, L.: Teacher Perspectives on Introducing
Programming Constructs through Coding Mobile-Based Games
to Secondary School Students. Informatics in Education 2020,
19, 543–568, https://doi.org/10.15388/infedu.2020.24.
5. Cheung, J.C.Y., Ngai, G., Chan, S.C.F., Lau, W.W.Y.: Filling
the Gap in Programming Instruction: A Text-Enhanced
Graphical Programming Environment for Junior High Students.
ACM SIGCSE Bulletin 2009, 41, 276–280.

6. Dekhane, S., Xu, X., Tsoi, M.Y.: Mobile App Development to
Increase Student Engagement and Problem Solving Skills.
Journal of Information Systems Education 2013, 24, 299–308.
7. Deng, W., Pi, Z., Lei, W., Zhou, Q.: Zhang, W. Pencil Code
Improves Learners’ Computational Thinking and Computer
Learning Attitude. Comput Appl Eng Educ 2020, 28, 90–104,
https://doi.org/10.1002 /cae.22177.
8. do Nascimento, M.D., Felix, I.M., Ferreira, B.M., de Souza,
L.M., Dantas, D.L., de Oliveira Brandao, L., de Oliveira
Brandao, A.: Which Visual Programming Language Best Suits
Each School Level? A Look at Alice, IVProg, and Scratch. In
Proceedings of the 2019 IEEE World Conference on
Engineering Education (EDUNINE); IEEE: Lima, Peru, March
2019; 1–6, https://doi.org/10.1109/EDUNINE.2019.8875788.
9. Garneli, V., Giannakos, M.N., Chorianopoulos, K.:
Computing Education in K-12 Schools: A Review of the
Literature. In Proceedings of the 2015 IEEE Global Engineering
Education Conference (EDUCON); IEEE: Tallinn, Estonia,
March 2015; pp. 543–551, http://dx.doi.org/10.1109/educon.201
5.7096023.
10. Hromkovič, J., Steffen, B.: Why Teaching Informatics in
Schools Is as Important as Teaching Mathematics and Natural
Sciences. In Informatics in Schools. Contributing to 21st
Century Education; Kalaš, I., Mittermeir, R.T., Eds.; Lecture
Notes in Computer Science; Springer Berlin Heidelberg: Berlin,
Heidelberg, 2011; Vol. 7013, 21–30, ISBN 978-3-642-24721-7;
https://doi.org/10.1007/978-3-642-24722-4_3.
11. Hsu, Y.-C., Ching, Y.-H.: Mobile App Design for Teaching
and Learning: Educators’ Experiences in an Online Graduate
Course. IRRODL 2013, 14, 117–139, https://doi.org/10.19173
/irrodl.v14i4.1542.
12. Javidi, G., Sheybani, E.: Teaching Computer Programming
through Game Design: A Game-First Approach. GSTF Journal
on Computing 2014, 4, 1, 17-22.
13. João, P., Nuno, D., Fábio, S.F., Ana, P.: A Cross-Analysis of
Block-Based and Visual Programming Apps with Computer
Science Student-Teachers. Education Sciences 2019, 9, 181,
https://doi.org/10.3390/educsci9030181.
14. Koorsse, M., Cilliers, C., Calitz, A.: Programming
Assistance Tools to Support the Learning of IT Programming in
South African Secondary Schools. Computers & Education
2015, 82, 162–178, https://doi.org/10.1016/j.compedu.2014.1
1.020.
15. Krpan, D., Mladenovic, S., Zaharija, G.: Mediated Transfer
from Visual to High-Level Programming Language. In
Proceedings of the 2017 40th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO); IEEE: Opatija, Croatia, May 2017;
800–805, https://doi.org/10.23919/MIPRO.2017.7973531.
16. Mladenović, M., Boljat, I., Žanko, Ž.: Comparing Loops
Misconceptions in Block-Based and Text-Based Programming
Languages at the K-12 Level. Educ Inf Technol 2018, 23, 1483–
1500, https://doi.org/10.1007/s10639-017-9673-3.
17. Musmarra, P.: Reflections on Teaching App Inventor:
Challenges and Opportunities. In EC-TEL Practitioner
Proceedings 2018: 13th European Conference on Technology
Enhanced Learning, 2193, 2018.
18. Noone, M., Mooney, A., Nolan, K.: Hybrid Java: The
Creation of a Hybrid Programming Environment. Irish Journal
of Technology Enhanced Learning 2021, 5, https://doi.org/1
0.22554/ijtel.v5i1.67.
19. Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A.,
Lahmine, S.: Learning Basic Programming Concepts by
Creating Games with Scratch Programming Environment.
Procedia - Social and Behavioral Sciences 2015, 191, 1479–
1482, https://doi.org/10.1016/j.sbspro.2015.04.224.
20. Papadakis, S., Orfanakis, V.: Comparing Novice Programing
Environments for Use in Secondary Education: App Inventor for
Android vs. Alice. IJTEL 2018, 10, 44-72, https://doi.org/10.15
04/IJTEL.2018.088333.
21. Paternò, F., Santoro, C.: End-User Development for
Personalizing Applications, Things, and Robots. International
Journal of Human-Computer Studies 2019, 131, 120–130,
https://doi.org/10.1016/j.ijhcs.2019.06.002.
22. Perkins, D. N., Salomon, G.: Teaching for transfer.
Educational Leadership 1988, 22-32.

- 346 -

A D A L T A J O U R N A L O F I N T E R D I S C I P L I N A R Y R E S E A R C H

23. Perkins, D. N., Salomon, G.: Transfer of Learning.
International Encyclopedia of Education, Second Edition,
Pergamon Press: Oxford, England, 1992.
24. Radosevic, D., Orehovacki, T., Lovrencic, A.: Verificator:
Educational Tool for Learning Programming. Informatics in
Education 2009, 8, 261–280, https://doi.org/10.15388/infed
u.2009.16.
25. Saeli, M., Perrenet, J., Jochems, W. M. G., Zwaneveld, B.:
Teaching Programming in Secondary School: A Pedagogical
Content Knowledge Perspective. Informatics in Education 2011,
10, 1, 73–88, https://doi.org/10.15388/infedu.2011.06.
26. Strong, G., O’Carroll, S., Bresnihan, N.: A Block Based
Editor for Python. In Proceedings of the Proceedings of the 13th
Workshop in Primary and Secondary Computing Education;
ACM: Potsdam Germany, October 4 2018; 1–2,
https://doi.org/10.1145/3265757.3265788.
27. Tkáčová, Z., Šnajder, Ľ., Guniš, J.: Introducing STEM
Activities into Informatics Education through Mobile Apps
Development. In ISSEP 2017 – The 10th International
Conference on Informatics in Schools, University of Helsinki,
Helsinki, Finland, 2017.
28. Tóth, T., Lovászová, G.: On Difficulties with Knowledge
Transfer from Visual to Textual Programming. In DIVAI 2018 –
The 12th international scientific conference on Distance
Learning in Applied Informatics. Conference Proceedings.
Wolters Kluwer ČR, a. s., 2018, 379-386.
29. Tóth, T., Michaličková, V.: From App Inventor to Java: A
Strategy for Mediating the Transition. In 2018 16th International
Conference on Emerging eLearning Technologies and
Applications (ICETA), Stary Smokovec, Slovakia, 2018, 591-
596, https://doi.org/10.1109/ICETA.2018.8572156.
30. Vega, J., Cañas, J. M.: PyBoKids: An Innovative Python-
Based Educational Framework Using Real and Simulated
Arduino Robots. Electronics 2019, 8, 899, https://doi.org/10.33
90/electronics8080899.
31. Weintrop, D.: Minding the Gap between Blocks-Based and
Text- Based Programming: Evaluating Introductory
Programming Tools. In SIGCSE ’15: Proceedings of the 46th
ACM Technical Symposium on Computer Science Education 5,
http://doi.org/10.1145/2676723.2693622.
32. Weintrop, D., Hansen, A. K., Harlow, D. B., Franklin, D.:
Starting from Scratch: Outcomes of Early Computer Science
Learning Experiences and Implications for What Comes Next. In
Proceedings of the 2018 ACM Conference on International
Computing Education Research (ICER '18). Association for
Computing Machinery, New York, NY, USA, 2018, 142–150,
https://doi.org/10.1145/3230977.3230988.
33. Weintrop, D., Wilensky, U.: Comparing Block-Based and
Text-Based Programming in High School Computer Science
Classrooms. ACM Trans. Comput. Educ. 2017, 18, 1–25,
https://doi.org/10.1145/3089799.
34. Weintrop, D., Wilensky, U.: How Block-Based, Text-Based,
and Hybrid Block/Text Modalities Shape Novice Programming
Practices. International Journal of Child-Computer Interaction
2018, 17, 83–92, https://doi.org/10.1016/j.ijcci.2018.04.005.
35. Weintrop, D., Wilensky, U.: Transitioning from Introductory
Block-Based and Text-Based Environments to Professional
Programming Languages in High School Computer Science
Classrooms. Computers & Education 2019, 142, 103646,
https://doi.org/10.1016/j.compedu.2019.103646.
36. Wing, J. M.: Computational Thinking. Communications of
the ACM 2006, 49, 3, 33-35, http://doi.org/10.1145/111817
8.1118215.

Primary Paper Section: A

Secondary Paper Section: AM, IN

- 347 -

