
Implementing Machine Learning Methods in
Searching Processes

Roman Čerešňák
University of Žilina

Žilina, Slovakia
roman.ceresnak@fri.uniza.sk

Karol Matiaško
University of Žilina

Žilina, Slovakia
karol.matiasko@fri.uniza.sk

Adam Dudáš
Matej Bel University

Banská Bystrica, Slovakia
adam.dudas@umb.sk

Abstract— Methods of machine learning are currently very
widespread, popular and are used in number of sectors - whether
it is medicine, industry or the transportation. In many industries,
machine learning is a factor of improvement which streamlines the
process of disease diagnosing, speeds up the process of object
identification at airports or eliminates number of errors which
may occur in the production process based on previous testing.
Machine learning applied to data retrieval processes in various
types of databases, whether relational or non-relational ones, can
bring more benefits than minimization of data retrieval time or
reduction of database server usage. Based on the previous research
– which focused on a comparison of the time required to obtain
data in relational and non-relational databases - we concluded that
it is more appropriate to implement methods and processes of
machine learning to non-relational key-value type databases such
as MongoDB or DynamoDB. Our proposed solution works with
two principles. The first one is the principle of monitoring
unfinished commands (operations) and their subsequent transfer
to the buffer memory. The second principle is based on definition
of the limit at which can machine learning efficiently provide
appropriate transfer of the supposedly requested data to the
buffer. This action can not only speed up the time required to
obtain data, but also provide proposal of data selection operations
based on previous queries of the user.

I. INTRODUCTION
With the arrival of artificial intelligence in the cloud

computing, two significant tools have come together in one
system - availability of powerful computing resources directly
on the network and new sophisticated methods which can find
patterns, relationships and correlations even in large amounts of
data. Platforms such as Amazon, Azure or Google Cloud make
it much easier to work with these systems, as some of the related
complex processes allow them to be configured with the use of
intuitive user interface.

Artificial intelligence, in the broadest sense of the term,
points to the fact, that machines can perform tasks that we
generally consider smart. We once thought that something like
this could only be achieved in a completely new way of
programming, something revolutionary and complex, which is
right on the edge of possible knowledge and maybe even further.
One of the oldest approaches to creating artificial intelligence is
to simulate the functions of the human brain. In 1959, Arthur
Samuel introduced work, which contained the term "machine
learning," in which he suggested that instead of programmers
teaching computers, they should let these machines learn on their
own. Paradoxically, machine learning is currently based on a
simple set of relatively old statistical algorithms that are
performed very quickly and repeatedly and work with large

amounts of data. This alone is enough to talk about a revolution.
Machine learning can find knowledge, relations, patterns,
correlations, estimate unknown values, identify anomalies or
classify seemingly unclassifiable in datasets with sizes beyond
anything standard tools can process. This turned programming
methods upside down: we no longer need to write algorithms to
solve problems, the algorithms are written by the computer itself
with the use of monitoring of large amounts of data.

Working with large amounts of data and the correct
statistical models, it is possible to find patterns and correlations
even in data which seem too complex at first glance and their
detection without the help of a large computational capacity is
more than complicated. Identifying the dependencies and
patterns hidden in this data can be used in finding solutions to
number of problems faced by various organizations worldwide.
As an example, by studying various factors - such as the age and
history of client or time and place of payment - indications of
suspicious payments in the bank environment can be found.
Machine learning can be used to predict future revenue of
organizations, estimate events which cause customer to change
mobile operators, choose movies for user to watch, determine
which machine in factory is inclined to defects soon or uncover
any other problem where large amounts of collected data is
available.

It is the large amount of data associated with non-relational
databases which led several researchers to implement machine
learning into multiple types of databases - such as relational and
non-real databases. The objective of this action was not only to
reduce the number of select, update, insert and delete operations
while working with the data in database but also to optimize
memory requirements for management of large amounts of data
in the mentioned operations. Due to the growing popularity of
non-relational databases, researchers decided to apply machine
learning to non-relational key-value databases [1]. Since it is
versatile and easily adaptable, the MongoDB database was
chosen as the basis for this type of applications [2].

We identified several aspects, which – in our opinion – are
critical in the data searching process and selection of data, and
we summarized them in this research article, which addresses
the following points:

 monitoring of unfinished data selection commands in
the relational database Oracle and the non-relational
database MongoDB,

 providing proposed data selection operations based on
previously used queries,

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

module, which can be used in transfer of records from
relational or non-relational database to the in-memory
database Redis.

Presented article is divided into following logical parts - after
the introduction, we present related research and articles which
deal with the issues researched in this paper and which served as
an inspiration for us in designing our solution. In the third
section, we introduce the modules and various possible methods
in which we implement machine learning into the process of data
selection and subsequent transfer of records to the database
Redis. We experimentally verify and compare proposed solution
with conventionally used methods in the section four. In the last
part of the paper, we summarize our solution and present
possibilities for future research related to the objective of this
article.

II. RELATED WORK

When researching the area of machine learning, we focused
on several research articles and other related works. As the most
influential and interesting for our research, we include research
presented in [3] which plans a flow-based IDS utilizing two
machine learning strategies: choice tree J48 and Multilayer
Perceptron (MLP). For testing reasons, the authors utilize
UNSWNB15 dataset. Authors of the work found out that the
utilization of J48 produces better rate of accuracy than straight
MLP, which is 0.985 and 0.910, individually. Furthermore, the
authors also discovered that expanding the number of layers
raises the precision, even though it increases time of
computation in the system.

Another research work, which was presented by Muttaqien
and Ahmad [4], utilizes highlight determination, clustering and
highlight change on the datasets NSL-KDD and Kyoto 2006.
Here, clustering is done by executing k-means algorithm whose
span of clusters is to be the limit for gathering the information.
This strategy is able to improve the classification execution and
increase the accuracy of the classification - best results reached
on the dataset NSL-KDD is 97.42% and 99.72% on the dataset
Kyoto 2006. Research by Thaseen and Kumar presented in [5]
focuses on IDS by making a normalization arrange, rank-based
chi-square highlight choice and classification with numerous
SVMs. The proposed strategy is verified on NSL-KDD and
KDD Cup99 datasets. It is illustrated that their strategy is more
reasonable for the use with NSL-KDD than KDD Cup99.

In [6] Mukherjee and Sharma explore three correlation-based
include-choice strategies applying to include determination
issues: correlation-based, information reinforcement and pick-
up proportions. In the expansion of the work, they also propose
a modern strategy for feature selection utilizing highlight
vitality-based lessening strategy to distinguish and after that
iteratively reduce less vital highlights. Utilizing the Credulous
Bayes classification, they improve performance with the
diminished dataset. Authors conclude that diminishing the
number of features leads to better execution of tasks.

Akashdeep et al. [7] propose an IDS with highlight choice
based on the procurement and relations between data. To choose
the highlights, they analyze the securing of the data and
relationship comes about. From this information, an unused
approach is proposed to sort out highlights which are valuable.
For this reason, they utilize nourish forward neural arrange
classification in preparing and testing, in expansion to the

normalization of the dataset. Compared to that without highlight
choice, the utilize of include determination appears way better
comes about. Amiri et al. [8] apply two highlight determination
strategies to KDD Cup99. They compare the shared information-
based highlight choice strategy with relationship coefficient of
direct and nonlinear degree for include choice. This strategy has
high precision in recognizing Inaccessible to Login (R2L) and
Client to Inaccessible (U2R) assaults.

Kasliwal et al. [9] create a crossover show utilizing the
Inactive Dirichlet Assignment (LDA) and the Hereditary
Calculation (GA). LDA is utilized to distinguish the ideal set of
attributes, while GA is utilized to calculate starting scores for
wellness esteem assessment to get new features utilized within
the classification of KDD Cup99 datasets. Ikram and Cherukuri
[10] propose a half breed IDS show with two approaches:
Foremost Component Examination (PCA) and Back Vector
Machine (SVM). The step to do is to perform parameter
selection optimization with PCA on the SVM classifier bit. With
optimization of punishment factors and gamma part parameters,
this strategy can move forward classification performance and
decrease classification time in preparing and testing.

In another paper dealing with machine learning authors [1]
apply data mining to classifying those anomaly data. This is
based on the facts that there are many data which are not ready
for use by a classification algorithm. In addition, that algorithm
may use all features which actually are not relevant to the
classification target. According to these two problems, we define
two steps: pre-processing and feature selection, whose results are
classified by using k-NN, SVM, and Naive Bayes. The
experimental results show that such pre-processing and
combination of CFS and PSO are better to apply to SVM which
is able to achieve about 99.9291% of accuracy on KDD Cup99
dataset.

The main objective of another paper deals with machine
learning is focused for training and combining intrusion
detection datasets. Authors in paper [2] presented a method to
train and combine several datasets from semi-structured sources
with the MapReduce programming paradigm under MongoDB.
It aims to increase the intrusion detection rates. In their work,
they are focus on KDD99, DARPA 1998 and DARPA 1999
dataset and with the big data technique MapReduce in
MongoDB: First, authors selected the most pertinent attributes
and eliminate the redundancies from the previous datasets. Then,
authors merged them vertically into the same collection. Finally,
they analyzed the dataset they used a Bayesian network as K2
algorithm implemented in WEKA.

 Despite the achieved results, which were presented in works
of other authors and our previous work [11], [12], [13], [14],
we decided to implement a solution which consists of
combination of several modules. This combination of modules
works on the basis of following three tasks:

replacing the computationally costly workflow
controlled by the machine learning with a faster
workflow similar to the one used with queries,
replacing the complexity of tight models and
supervised learning with a single multipurpose system
and queries similar to SQL and NoSQL databases,
maintaining effective performance and quality of
prediction compared to supervised learning.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 88 --

Fig. 1. Diagram of proposed architecture

III. ARCHITECTURE FOR DATA SEARCHING WITH THE USE
OF MACHINE LEARNING

To implement and properly operate machine learning in the
context of data searching, we created an architecture, which is
presented in the Fig. 1 and work as follows:

The client enters the data into S3 with the use of the
required structure which triggers Lambda function.
SageMaker Batch Transform job is called to
preprocess loaded dataset for further processing in
proposed model.
Machine learning predictions are created and sent back
onto the S3 bucket.
SQS is set up on given S3 bucket to auto-ingest the
predicted result onto Snowflake
Once the data lands onto Snowflake, Streams and
Tasks are called.

Due to the need for efficient record processing, we created
a function which is used for transferring data from file to S3
(Simple Storage Services). For a simpler implementation, we
created a procedure which moves the records and then stores
them in two tables of relational database MySQL.

These tables are shown in Fig. 2 - specifically the tables
order_cancellation and prediction_status, which are filled
using the mentioned procedure controlled by machine learning.
The whole principle is covered by Snowflake.

In order to call Batch Transform, we need to create an input
table which contains data for the model and mandatory fields,
predictionid which is the uuid for the task, record_seq which is
unique identifier, for reach input row, a NULL value is stored in
the prediction column – this column is targer of interest.

The data we tested are presented in the Table I and serve as
samples, which were then moved from the S3 service to the non-
relational database MongoDB. Since we use number of services
in the cloud computing solution from Amazon, where there is no
direct support for the MongoDB, we have chosen a direct

Fig. 2. Unloading data onto S3

substitute for these purposes and that is the non-relational
database DocumentDB, which has almost identical properties.

As can be seen in the Table I, the values we used for our
testing and monitoring of proposed model contains 6 columns,
while the value in the prediction column is initially set to the
unknown value NULL. This value indicates that no prediction
has been performed on the given data yet. Modification of this
column is focus of the following steps of proposed method –
these NULL values will be adjusted on the basis of a correctly
or incorrectly performed prediction, created by the user in the
process of obtaining values using the proposed architecture.

The call_ml_prediction Stored Procedure takes in a user-
defined job name and input table name. Calling it will unload the
file (using predictionid as the name) onto S3 bucket in the /input
path and create an entry in the prediction_status table. From
there, Batch Transform will be called to create prediction based
on the input data.

In order to be able to call the procedure, we wrote a command
which will call the SQL script, which can be found at the
following link:

https://github.com/romanceresnak/fruct29/blob/main/unload2s3
_storedproc.sql

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 89 --

TABLE I. SAMPLE DATA USED IN PROPOSED MODEL

This script directly manages the Snowflake, which calls the
procedure in case of a query for individual data and then updates
the values in the tables.

While researching the area and experimenting with proposed
method some undesirable behavior emerged - in the case of
multiple users who requested the same data, the individual
commands were blocked. This fact caused certain delay for one
of the users. This led us to decision, that it won’t be possible to
run more requests concurrently. Also, for system simplicity and
more efficient request management, we have ensured that only
one file is loaded on S3, but Batch Transform can process
multiple input files simultaneously as shown in Fig. 3.

TABLE II. PREDICTION STATUS TABLE

In order to create individual predictions, we need to secure
correct management of data and their subsequent processing.

Once the data is read and moved to S3, the Lambda function
is called – this function triggers the reading of data and their
subsequent processing. Due to the frequent loading of data from
file, we decided to subsequently transfer this data to the non-
relational database DocumentDB, mainly due to easier data
management and data searching possibilities.

Although in many situations the data prediction was fast, we
decided to implement the Database module into the architecture
shown in the Fig. 3. The mentioned database module is
responsible mainly for data transferring. During the prediction,
the unfinished command (operation), which is being written by
user, is obtained from the non-relational database and then, using
a simple script the records are transferred to the Redis database.
The script is stored on the following link:

https://github.com/romanceresnak/fruct29/blob/main/cache.js

The created module, which is presented on the Fig. 4, allows
us to acquire data even faster. Other than that, this module takes
care of management of data. The prediction of the data searching
command was relatively inaccurate in the initial steps, and the
record transferred from the non-relational database to the
memory database (Redis) used to be inaccurate in the initial
phase.

For management reasons, the proposed architecture
takes care of record transferring in the following way:

The algorithm follows the currently written command:

o In the case it has already been found in
previous learning cycles, that the predicted
command is correct, then the record is moved
to the in-memory database.

o If the given command has not yet occurred
during learning, then the data with the largest
volume are transferred to the in-memory
database (the data with the largest volume are
understood as data with the largest number of
tables used by user, eg. records consisting of
data from 5 tables).

Transferred records are used to provide data for
reference to the SageMaker.
However, if prediction fails or is inaccurate, one of
these two situations occurs:

o If a situation occurs that the prediction failed
and the records in in-memory database are
not sufficient, the data is deleted from the
memory and records are retrieved from the
non-relational database.

o In other case, the data is sufficient, and
system reduces based on the new prediction -
not in a non-relational database, but directly
in the in-memory database.

In this way, we obtain values which are transferred to
the file, and at the same time the records in the table
are updated for further learning.

In such case, that the algorithm obtains the correct data, this
dataset is provided to the SageMaker file. After transfer of the
data, the Lambda function, which is not set to the default value
of 5 minutes, is called. The function is set to monitor the action
caused by the filling of the SageMaker file. Subsequently, we
create a file, which contains a copy of the data. This file is
provided directly to the user.

In order to make management of the individual process less
demanding, we decided to share all used files and data not only
in the users’ process, but also in the processes of other
participants by introducing files into S3, which can be used in
other predictions.

For the proper functioning of the architecture and subsequent
transfer of the records, we created two files, which are run
automatically based on the process confirmation. These files can
be found at:

https://github.com/romanceresnak/fruct29/blob/main/lambda_c
all_batch_transform.py

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 90 --

Fig. 3. Data flow diagram of proposed architecture

Fig. 4. Design schema of the proposed database module

Once Batch Transform completes, it outputs the result as a
.csv.out in the /sagemaker path. Another Lambda gets fired
which will copy and rename the file as .csv to the /snowflake
path where SQS is setup for Snowpipe auto-ingest.

Once the data is dropped onto the /snowflake path, it is
inserted into the prediction_result table via Snowpipe. For
simplicity, since SageMaker Batch Transform maintains the
order of the prediction, the row number was used as the identifier
to join to the input table. We did the postprocessing step within
Batch Transform itself.

The script needed to perform the above-mentioned
operations is stored on GitHub, specifically at the following
address:

https://github.com/romanceresnak/fruct29/blob/main/snowf
lake2sagemaker_snowpipe.sql

Data streaming and running tasks were among the
subprocesses which were necessary to secure during the process.
For this reason, we have created a stream, presented on the Fig.
5, in which prediction_result fills prediction_result_stream after
Snowpipe delivers the data. This stream, specifically the

system$stream_has_data 'prediction_result_stream, is used to
schedule populate_prediction_result tasks to call the
populate_prediction_result stored procedure to fill prediction
data in the hotel_cancellation table only if there is a stream.
Unique identifier predictionid is set to be relational variable of
the task.

To update the values, we had to adjust the procedure, which
updates the values based on the correct or incorrect prediction.
The modified procedure can be seen at the following link:

https://github.com/romanceresnak/fruct29/blob/main/snowf
lake2sagemaker_populate_prediction_result.sql

After applying and implementing the procedure which
ensures correct prediction, our values have also changed. In the
table I, prediction was equal to NULL, which means that the
prediction was not performed or was interrupted. After applying
our modified procedure, the data in the Table II, specifically the
prediction column, was updated. We present the modified table
and its values in Table III.

At the end of the task and when populate_prediction_result
is completed using the system task session variable, the next
update_prediction_status task updates the prediction status from
“Sent” to “Completed” (see Table IV). This completes the whole
process.

IV. EXPERIMENTS ON THE ARCHITECTURE FOR DATA
SEARCHING WITH THE USE OF MACHINE LEARNING

Even in design and implementation of the proposed
architecture, we needed to secure and effectively encounter
several situations which would be able to significantly influence
and distort the correctness of the achieved results in a negative
way. Based on these conditions, we started the process with the
same amount of data and with the default settings of not only
the entire cluster (while maintaining the "free tier" mode) but
also the basic settings of database servers, specifically
DocumentDB and Redis with settings recommended directly by
Amazon.

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 91 --

Fig. 5. Flow diagram of piping the data into Snowflake

TABLE III. THE RESULT FROM BATCH TRANSFORM

TABLE IV. PREDICTION STATUS VALUE

The results of experimental evaluation of the proposed
architecture for data searching with the use of machine learning
are presented in the Fig. 6.

While implementing our architecture for selecting data from
a non-relational database, it was clear that the process would be
more time-effective, but we did not know how effective this
process would be. As can be seen in the Fig. 6, the overall time
of computation of the problem is lowered by approximately
60%. Even though this improvement is satisfying, we improved
the process even more by introducing proposed database
module (see Fig. 3).

The advantage of the database model was not significant at
the beginning of experimental testing since our data
management between the in-memory and the non-relational
database was not managed by the prediction management. This
caused latency in management of records. After the
implementation of data management for machine learning, the
server utilization was reduced, and subsequently computational
time of the problem was reduced even more – to approximately
34% of computational time compared to the time of pure
machine learning implementation. Therefore, proposed

approach reduced computational time of the problem to 13,5%
of its original duration.

It is necessary to mention one fact when applying this
method. The time reduction we obtained is significant
compared to conventional methods, but the usage and
management of the server increased from 10% to a value of
approximately 53% while maintaining the "Free tier" account.

Fig. 6. The result of comparison of various methods for the same query

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 92 --

During the testing, we focused on the influence of change of
programming language while the algorithms were running.
Many algorithms were programmed in the python language,
which allowed us to quickly access the necessary
functionalities, but unfortunately it also had drawback of lower
computational speed. When rewriting source codes from python
to GO (golang), the speed of computation increased as much as
12 percent. The problem that has arisen with rewriting source
codes is the length of implementation e.g., the number of lines
of script originally written in the python language increased by
almost 79 percent when rewritten in Golang, which caused a
significant prolongation of the development of the mentioned
application.

On the other hand, by rewriting the code, server load
increased by 13 percent – this is caused by GOs’ ability to use
multiple computational units (cores) at the same time, which is
not implemented as efficiently in the Python. We also note that
the results we measured may differ diametrically from the
results that will be obtained on a server with a larger number of
cores.

V. CONCLUSION

Currently, the growing volume of data causes significant
problems in various industries and areas of interest. A large
amount of data must be stored efficiently for system to be able
to capture the demand for data in a relatively short time and then
provide the data to the user. Due to this fact, we applied machine
learning to the process of obtaining data from the non-relational
database MongoDB, which is considered by many researchers
to be the most universal non-relational database. Since we
designed and implemented a module which would also meet the
versatility of relational databases, we also created a method
which could work with relational database Oracle.

Use of machine learning in proposed architecture caused
significant time reduction during the initial implementation of
the process. Predicted commands were not accurate enough in
the first steps, but after successful data acquisition, the
efficiency of the implementation process manifested itself and
caused the duration of computation of process to be reduced.

The proposed method works efficiently and reliably in two
steps. The first step is to monitor the unfinished command in the
database environment, with the method transferring data from
the requested database to the in-memory database and thus
speeding up the data acquisition process. If the user uses clauses
which reduce the amount of data process works with, the
method does not apply the condition in the used database, but
in the cache memory. The second step is based on the possibility
of providing user with commands and operations based on
previous queries. Even before confirming the proposed
command records of data are moved into the cache. Based on
the achieved results, we can clearly state that the process
proposed in this research article can always obtain the requested
data faster than with the use of conventional methods.

The implementation of machine learning in search processes
has the potential to further improve not only the record search

process itself, but many factors also suggest that a similar
implementation could help with data update processes. Our
future goal is to implement the created module for other types
of non-relational databases and to create a general module that
will provide the functionality we created using a simple access
point.

ACKNOWLEDGMENT

This work was supported by Grant System of University of
Zilina No. 1/2020. (8056).

The research was partially supported by the grant of The
Ministry of Education, Science, Research and Sport of Slovak
Republic - Implementation of new trends in computer science
to teaching of algorithmic thinking and programming in
Informatics for secondary education, project number KEGA
018UMB-4/2020.

REFERENCES

[1] T. Ahmad and M. N. Aziz, “Data preprocessing and feature selection for
machine learning intrusion detection systems,” ICIC Express Lett., vol.
13, pp. 93–101, Jan. 2019.

[2] E. Marwa and F. Jemili, “Using MongoDB Databases for Training and
Combining Intrusion Detection Datasets,” 2017, pp. 17–29.

[3] L. Van Efferen and A. M. T. Ali-Eldin, “A multi-layer perceptron
approach for flow-based anomaly detection,” in 2017 International
Symposium on Networks, Computers and Communications (ISNCC),
2017, pp. 1–6.

[4] I. Z. Muttaqien and T. Ahmad, “Increasing performance of IDS by
selecting and transforming features,” in 2016 IEEE International
Conference on Communication, Networks and Satellite (COMNETSAT),
2016, pp. 85–90.

[5] I. Sumaiya Thaseen and C. Aswani Kumar, “Intrusion detection model
using fusion of chi-square feature selection and multi class SVM,” J. King
Saud Univ. - Comput. Inf. Sci., vol. 29, no. 4, pp. 462–472, 2017.

[6] S. Mukherjee and N. Sharma, “Intrusion Detection using Naive Bayes
Classifier with Feature Reduction,” Procedia Technol., vol. 4, pp. 119–
128, 2012.

[7] Akashdeep, I. Manzoor, and N. Kumar, “A feature reduced intrusion
detection system using ANN classifier,” Expert Syst. Appl., vol. 88, pp.
249–257, 2017.

[8] F. Amiri, M. Rezaei Yousefi, C. Lucas, A. Shakery, and N. Yazdani,
“Mutual information-based feature selection for intrusion detection
systems,” J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1184–1199, 2011.

[9] B. Kasliwal, S. Bhatia, S. Saini, I. S. Thaseen, and C. A. Kumar, “A hybrid
anomaly detection model using G-LDA,” in 2014 IEEE International
Advance Computing Conference (IACC), 2014, pp. 288–293.

[10] S. Thaseen, “Improving Accuracy of Intrusion Detection Model Using
PCA and optimized SVM,” J. Comput. Inf. Technol., vol. 24, pp. 133–
148, Jun. 2016.

[11] M. Kvet, V. Šalgová, M. Kvet and K. Matiaško, “Master Index Access as
a Data Tuple and Block Locator “ in Conference of Open Innovation
Association, FRUCT, 2019, pp. 176–183.

[12] M. Kvet, “Data Distribution in Ad-hoc Transport Network”, Proceedings
of the International Conference on Information and Digital Technologies
2019, pp. 275-282 – ISBN 978-172811401-9

[13] M. Kvet, “Relational data index consolidation”, 28th Conference of Open
Innovations Association FRUCT, FRUCT 2021; Virtual, Moscow;
Russian Federation, - ISBN 978-952692444-1

[14] J. Škrinárová, L. Huraj, V. Siládi, “A neural tree model for classification
of computing grid resources using PSO tasks scheduling”, Neural
Network World, Volume 23, Issue 3, 2013, Pages 223-24

__PROCEEDING OF THE 29TH CONFERENCE OF FRUCT ASSOCIATION

-- 93 --

