The International Conference on Information and Digital Technologies 2021

On Graph Coloring Analysis Through Visualization

Adam Dudas
Department of Computer Science
Faculty of Natural Sciences
Matej Bel University
Banska Bystrica, Slovakia
email: adam.dudas @umb.sk

Abstract—The focus of the presented article is put on the
analysis of edge coloring of selected sets of graphs - we are
specifically interested in edge 3-coloring of graphs called snarks.
Previous research suggests, that while using a single coloring
algorithm and using various initial graph coloring edges, coloring
of such graph may take anywhere from time lower than one
millisecond to the time ranging in hundreds of milliseconds. In
our case, we use recursive backtracking coloring algorithm based
on breadth-first search and implement the change of initial graph
coloring edge via permutation of adjacency matrix of graph. In
this article, we present a tool created for the needs of analysis
of edge coloring of graphs which is based on visualization of
edge coloring and we present several problematic subgraphs and
patterns which increase the time of edge coloring of cubic graphs.

I. INTRODUCTION

Graph theory includes number of problems which can be
solved by operations on graphs. In our research we deal with
edge coloring of graphs, which is relevant in several areas -
scheduling, radio frequency allocation, compiler optimization
or SAT solvers. [1], [2].

Edge coloring of graphs is an NP-complete problem [3],
which can be simply defined as assigning colors to the edges
of given graph. In the presented research, we specifically deal
with proper edge k-coloring of selected sets of graphs - edge
k-coloring is proper when no adjacent edges are colored with
the use of same color of k colors used for given graph (see
Fig.1).

._________..___

Figure 1. Example of improper (left) and proper coloring of the same graph

Fig. 1 presents graph colored with two different edge
colorings - on the left is the graph described by the vertices (A,
B, C), which is edge colored improperly. Coloring of edges
incident to vertex A is problematic since the two edges are
colored with the use of the same color (in this case represented
by a dashed line). On the same graph, now described by the

Jarmila Skrindrova
Department of Computer Science
Faculty of Natural Sciences
Matej Bel University
Banska Bystrica, Slovakia
email: jarmila.skrinarova@umb.sk

Adam Kiss
Department of Computer Science
Faculty of Natural Sciences
Matej Bel University
Banska Bystrica, Slovakia
email: adam.kiss@student.umb.sk

vertices (D, E, F) the proper edge k-coloring is presented -
where k is equal to three - therefore, we use three colors
represented by dashed line, dotted line and solid line.

We use a specific type of graphs, which are suitable for
our purposes - a group of cubic graphs (graphs in which
each vertex is incident with exactly three edges) called snarks.
Snarks are cubic graphs, which cannot be colored with the use
of three colors [4]. However, there is no algorithm which is
able to compute the "non-colorability” of a graph directly -
the standard procedure for determining whether a cubic graph
is a snark or not is such that the graph is edge-3-colored by
possible colorings until we exhaust all possibilities. In the case,
that at the end of this process the graph is edge 3-colored
properly, then it is not a snark, otherwise the graph in question
is a snark. Such coloring is thus an extreme case of edge
coloring, in which it is necessary to recolor the graph several
times.

In the research presented in this article, we use a simple
recursive edge backtracking algorithm. It is known that while
using this algorithm, the time of computation of edge k-
coloring of a graph depends on the initial edge of coloring
of the graph. The differences in these computational times of
the edge k-coloring of the graph range from less than one
millisecond to several hundred milliseconds.

This article presents a tool created for the needs of analysis
of this edge coloring of graphs based on visualization of edge
coloring and searching for subgraphs and patterns, which pro-
long computation of the problem. Presented paper is structured
as follows:

o In the section II of the paper, we present our previous
research in the area and research of other authors, which
is relevant to problems described in the paper.

o Section III is focused on the principle of proper edge
k-coloring of graph, cubic graphs, edge backtracking
algorithm used in the proposed solution and change of
initial edge of coloring of graph.

o Section IV describes design and implementation of pro-
posed tool for edge coloring visualization purposes.

o In the section V, we compare proposed tool with other,
comercialy available tools focused on graph visualization
and present several subgraphs, which are problematic in
the edge k-coloring of graph.

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

71

On Graph Coloring Analysis Through Visualization

II. RELATED WORKS

Graph coloring is NP-compelete problem, which can solved
with the use of several algorithms such as:

o Edge-color algorithm presented by author of [S]. This
algorithm uses polynomial space which improves over
the previous, O(2"/2) algorithm of authors Beigel and
Eppstein [6]. Author of [5] uses natural approach of
generating inclusion-maximal matchings of the graph.

« Different approach to the graph coloring was introduced
by authors of [7] who present simple but empirically effi-
cient heuristic algorithm for the edge-coloring of graphs.
The basic idea of this algorithm is the displacement
of so called conflicts (adjacent edges colored with the
use of same color, see. Fig 1) along paths of adjacent
vertices whose incident edges are recolored by swapping
alternating colors - with the use of Kempe interchange.

« Simple backtracking approach to edge coloring of graph,
which uses recursive functions was presented in several
research articles and publications [8], [4]. We describe
this algorithm in detail in the section III of this paper.

Research presented in this article is continuation of research
related to use of parallel and distributed computing in coloring
of cubic graphs and visualization of graphs presented in:

o In the paper [9], we briefly introduced the proper edge
coloring of graphs in the context of parallel and dis-
tributed computations while using various initial edges
for coloring of the graph implemented via permutation
of adjacency matrix of graph.

o The paper [10] presented use of adjacency matrix per-
mutation as a way to minimize time of computation of
proper edge coloring of large sets of graphs.

« Research presented in the [11] was focused on the visu-
alization of graphs with specific objectives - clarity of
diagram of graph, possibility of various input formats
for graph visualization and possibility of simultaneous
visualization of sets of graphs.

III. EDGE COLORING OF CUBIC GRAPHS

Graph G, as we are considering it in the scope of the
presented research, consists of [12]:
« vertices - elements of set V(G). In the Fig. 1 vertices are
labeled with capital letters A, B, C, D, E and F.
« edges — elements of set E(G) - edge is connection between
two vertices and we can label it with the use of labels of
these two vertices.

Therefore, graph G is pair of sets V and E, where elements
of the set E are double element subsets of the set V [13]:

G=(V,E),ECI[V]? (1)

The concept of degree of vertex represents number of edges
incident to the given vertex (since we work strictly with
undirected graphs, by incident, we mean connected to the
vertex in any way). In the case vertex V is of degree equal to
three, we use notation deg(V) = 3. Highest (maximal) degree
of vertex in graph G is denoted by A(G). In this paper we

consider strictly cubic graphs. Graph is cubic when all of it’s
vertices are of degree equal to three.

Main objective of presented research is edge coloring of
cubic graphs - operation of assignment of colors to individual
edges of graph. Coloring is called proper when there is no
conflict in the coloring of given graph, this means that no
vertex of given graph is incident to two or more edges colored
with the same color. Lowest number of colors usable in proper
edge coloring of graph G is called edge chromatic index of
graph G. For this property of graphs, we use notation ¥ ’(G)
[13].

Vizing’s theorem [13], which says that minimal number of
colors needed for coloring of graph is in the interval <A(G),
A(G)+1>, holds true. Formal notation of Vizings’ theorem
focused on minimal number of colors:

AG) <X (G) <AG) +1)

where A(G) is maximal degree of vertex in the graph G
and y’(G) is edge chromatic index of the graph G. Since every
vertex of cubic graph is of degree equal to three, we consider
three or four colors for proper coloring of cubic graph.

There is only small group of cubic graphs which need four
colors for their proper edge coloring. Graphs from this group
of cubic graphs are called edge 3-uncolorable graphs or snarks
[4].

Chromatic index of snarks is y’(G) = 4. In order to find out
whether given graph G is snark, we need to edge color it with
the use of three colors. Therefore coloring algorithm needs
to verify every possibility of edge 3-coloring of the graph G.
Algorithms are able to decide whether the graph is snark or
not after checking all possible edge colorings with the use of
three colors.

The subsection A servers as an introduction to algorithm
used for proper edge 3-coloring of graphs and in the subsection
B, we introduce principle and method for the change of initial
edge of coloring.

A. Edge Coloring of Cubic Graphs Using Edge Backtracking
Algorithm

In the presented paper, we use algorithm on the basis
of breadth-first search called edge backtracking algorithm as
algorithm for edge coloring of graphs.

Edge backtracking algorithm works on the basis of edge
coloring of graph with predetermined succession of three
colors. In the case, that algorithm finds conflict in the coloring
of graph, it backtracks to the previous edge, recolors the
edge and continues in coloring. If there are no possible
proper colorings of problematic edge, algorithm backtracks
even further back - to the edge which precedes both of the
recolored edges.

Algorithm continues in this approach until either whole
graph is colored properly, or until algorithm examines all
possible ways of edge coloring of given graph.

Time complexity of edge backtracking algorithm is
0(2"~1), where n is number of vertices of given graph.

Algorithm itself is represented in these steps:

72

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

The International Conference on Information and Digital Technologies 2021

1) Algorithm takes three colors and colors consecutive
edges of graph until:

o cither graph is colored properly,
« or there is conflict in the graph coloring.

2) In the case of conflict in the coloring of graph, algorithm
backtracks to edges which were already colored and re-
colors them with the use of next color in predetermined
succession of colors until:

o cither conflict is solved — in this case, algorithm can
continue in further edge coloring of graph as stated
in the first step of the algorithm.

« or all possibilities of edge coloring of the graph are
improper. In this case the colored graph is snark
(cubic graph which cannot be properly colored with
the use of three colors).

B. Change of Initial Edge of Coloring

While using algorithm presented in the subsection A the
time of computation of edge k-coloring of a graph depends on
the initial edge of coloring of the graph. We showed this in
the work [10] and [11]. The differences in these computational
times of the edge k-coloring of the graph range from less
than one millisecond to several hundred milliseconds. For the
change of initial edge of coloring, we use graph isomorphism.

A

L ORrORrRO
rOoOORrOoRr
OFr L ORrO
Or ORrOoRr
P ORRL OO
O OO R R

Ce

O R ORRKRO
R OPRrOOoR
[= I =« =
P OORr RO
POORKOR
O R P OFR O

me

Figure 2. Example of isomorphic cubic graphs and their adjacency matrices

Let the graph G’ and the given graph G be isomorphic
graphs. An important feature of isomorphic graphs is that any
pair of such graphs has different adjacency matrices but identi-
cal diagrams (presented in the Fig. 2 - example of isomorphic
cubic graphs for simple visualization). In our case, this means
that these are identical graphs with different sequences of
vertices and edges. If the graph G is represented by the
adjacency matrix A, we can create a different sequence of
edges of the graph G (an isomorphic graph G’) by permuting
the adjacency matrix of the graph G.

This permutation of adjacency matrix A of graph G can
ve computed with the use of following matrix multiplication
formula:

A =P lxAxP 3)

where A’ is permuted adjacency matrix of G, A is original
adjacecny matrix of graph G, P represents (randomly gener-
ated) permutation matrix (this matrix needs to be generated in
proper format - containing exactly one value 1 in each row
and column of the matrixm otherwise filled with the value 0)
and P! is transposed permutation matrix P.

The permuted adjacency matrix A’ obtained in the described
way represents the changed order of the edges of the original
graph G. Hence, while coloring graph represented by A’,
algorithm uses different initial edge for coloring of the graph
as in the case when the matrix A is used.

IV. TOOL FOR VISUALIZATION OF GRAPH COLORING

In this section of the article we describe the design and im-
plementation of the software tool which can be used to analyze
edge coloring of graphs. While designing and implementing
the tool, we focused on several basic criteria applicable to
graph drawing tools:

o Input formats - it is necessary to be able to insert data
in various formats of graph notation. The standard input
formats in commercially available tools are the adjacency
matrix of graph, the incidence matrix of graph, or the
adjustment list of graph. However, in addition to these
formats, there is number of formats that are practical and
space effective for storing graphs in the memory of a
computer.

o Drawing algorithm - there is large number of various
graph drawing algorithms, which are the basis for graph
visualization in the form of a diagram. The main required
properties of graph drawing algorithms are the lowest
possible computational time needed to draw the graph and
clarity of the diagram itself - the clarity of the diagram
is implemented as minimization of edge crossing in the
diagram and maximization of symmetry of the diagram
of graph.

« Specific functions - all available tools which can be used
for graph visualization also contain a set of implemented
graph functions. Such functions include shortest path
search in the graph, shortest cycle search in the graph,
Hamiltonian cycle search and so on. Rarely is any form
of graph coloring among the implemented functions -

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

73

On Graph Coloring Analysis Through Visualization

when it is included in the set of functions, only the vertex
coloring is implemented.

In the rest of this section, we describe how we proceeded in
design and implementation of these three criteria in the case
of our proposed software tool for graph coloring.

A. Design of Tool for Visualization of Graph Coloring

Since our tool for graph visualization has a specific objective
of edge coloring visualization, we focused on adapting the
criteria described above to this goal.

Within the presented tool, we require three input formats
for visualization of graph:

o Adjacency matrix and adjacency list - these are conven-
tional methods of representation of graphs. The adjacency
matrix is a matrix of size n x n, where n is the number
of vertices of given graph. Each row and column of this
matrix represents one of the vertices of the given graph -
in the case there is an edge connecting two vertices in the
graph, the value 1 is recorded in the adjacency matrix,
the value O is recorded otherwise. The adjacency list is
a list of vertices with assigned names of the vertices to
which they are connected by an edge.

o Graph6 format - with the use of this format, we are able
to store graphs in a compact manner, using vectors of
printable ASCII characters. A graph in graph6 format
is stored in a single line of a file, which allows us to
efficiently store entire sets of graphs in a single file.
Although this graph format is unreadable to humans (as
opposed to the adjacency matrix and mainly adjacency
list), its advantages are versatility and efficiency of use.

\/

Figure 3. Example of use of circular layout drawing algorithm applied on
the graph from Fig.2

After reading input graph in one of the selected formats, the
application draws the graph using the selected graph drawing
algorithm. For the purposes of this work, we have chosen
circular layout - a popular method of graph drawing, which
offers high clarity of diagram of graph (Fig. 3). Regarding
number of edge crossings in the graph - this algorithm is
able to draw a graph with no edge crossings only in the case

of outerplanar graphs. In other cases, edge crossing occurs,
but it is possible to implement optimization techniques which
minimize number of crossings.

In this way we implement clarity of the diagram of graph
based on minimization of edge crossing in the diagram and
maximization of symmetry of the diagram of graph.

The third - and arguably the most important - criterion of
the design of the graph visualization tool is the specification
of a set of functions which can be used while working with
the tool:

o Translation between formats of graph description - the
examined graph is inputted in one of three possible for-
mats (adjacency matrix, adjacency list or graph6 format).
Due to the readability of the graph and in order to
increase other possibilities of working with the graph,
it is practical to translate the examined graph from the
input format into the other two defined formats.

« Edge coloring of graph - the core of the presented appli-
cation is edge coloring of graphs. The Edge Backtracking
Algorithm presented in section III, subsection A is used
for implementation of this action.

o Visualization of edge coloring of graph - an extension
of the standard edge coloring of graph is the element
of visualization of the computed coloring. For the edge
colored graph, a graph diagram is drawn and the edges
of this diagram are colored according to the computed
coloring. In such case, that the graph is not proper edge
k-colorable, the edges of the graph remain colored with
the use of default color. The user is notified that there is
no proper edge k-coloring for the given graph.

« Step-by-step edge coloring - from the point of view of
analysis of edge coloring, it is necessary for the user to be
able to browse through a specific computing coloring in
the step-by-step manner. Each step represents coloring or
recoloring of one of the edges of the graph visualized in
the application. Since edge coloring can take several tens
to several thousand of steps, it is advisable to implement
the stepping options set to 1 step, 5 steps, 10 steps and
50 steps at a time. It is also necessary to be able to step
edge colorgin in both directions (forward and backward)
with the possibility of 1, 5, 10 or 50 steps at a time.

B. Implementation of Tool for Visualization of Graph Coloring

In the implementation of the required solution, we followed
the design presented in the section IV, subsection A. The ap-
plication was implemented using C/C++ language as follows:

e The input graph for the program is specified in a text
file, which is located in the directory with executable file
of the program. This graph can be stored in adjacency
matrix, adjacency list or graph6 format.

o After starting the program, the input file is loaded and the
format in which the graph is stored is specified. In the
case of the adjacency matrix, the program proceeds to the
next step of computation. In other cases, the input format
is translated to adjacency matrix and the computation
continues. In this step, two new files are created - each

74

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

The International Conference on Information and Digital Technologies 2021

Table I
COMPARISON OF FUNCTIONALITIES OF OPEN SOURCE, PAID AND PROPOSED TOOLS

Graph Online CS Academy Matlab Wolfram Mathematica Proposed Tool
Input: adjacency matrix YES YES YES YES YES
Input: graph6 format NO NO NO YES YES
Edge coloring of graph NO NO YES YES YES
Step analysis of edge coloring NO NO NO NO YES

containing the graph stored in one of the two remaining
formats.

« Since the graph is represented as an adjacency matrix, it
can be edge colored using the edgeColorise function.
The function uses Edge Backtracking Algorithm and
edge 3-colors the graph. The output of this function is
information on whether the graph can be colored with
the use of three colors or not and a set of steps for edge
coloring of the graph. These steps are later visualized.

o The graph is then visualized using the drawV ertices and
drawFEdges functions in the graphical user interface run
by the drawGUI function. This GUI contains space for
plotting graphs and buttons for stepping options which
consist of eight buttons: +1, +5, +10, +50 and -1, -5,
-10, -50 steps.

« Finally, the drawSteps function is called, which uses
step data fo edge coloring computed in the edgeColorise
function and, after the user interacts with the GUI buttons,
draws the individual coloring steps.

The application uses two windows for its operation. The
first window serves as a console in which the user is provided
with information about the input graph - number of vertices,
adjacency matrix, adjacency list and graph6 format of the
graph, computed information about edge 3-colorability of the
graph, number of steps needed in edge coloring of graph and
current step of coloring visualized in the other window of
application.

The second window serves as a GUI - the visualization of
the graph itself takes place in it and it provides buttons for
step-by-step edge coloring.

V. EXPERIMENTS ON GRAPH COLORING VISUALIZATION

We test the proposed application from the two perspectives.
The first perspective is to compare the basic functionalities of
the presented tool and a group of other - open source or paid
- tools that are designed for a similar purpose. The properties,
we focuse on include input data formats for tools, functions
implemented in individual tools, the possibility of analyzing
graphs in the tool or the duration of edge coloring of graphs
in the application.

The second point of view of application testing is the use
of the presented application in the identification of several
patterns and subgraphs that cause an increase in the time of
computation of edge coloring of graphs.

A. Comparison of Proposed Graph Visualization Tool with
Other Available Tools

There are several tools available that are commonly used to
draw graphs - whether open source tools like GraphOnline
or CSacademy, or professional paid tools like Matlab or
Wol framMathematica. All of these tools share common
features with small variations.

In the Tab.I we present the properties available in the
individual tools and compare them with each other and at the
same time with the application proposed in this paper.

From the Tab.l it is clear, that we can divide the properties
essential for our research into following three groups:

o Input data formats for tools - each of the tools is able
to work with an adjacency matrix as input, but only a
minority of tools can work with input data in the graph6
format. This format is practical and space effective way of
storing a graph in the memory of computer - it encodes an
adjacency matrix of graph into a one-line character string.
This format is supported by WolframMathematica
and proposed application.

« Functions implemented in the tool - each of the presented
tools contains several implemented functions, that can be
applied on graphs (searching for the shortest path in the
graph, searching for the shortest cycle of graph, and so
on). The function that interests us is the edge coloring of
graph. This function is present only in the tools M atlab,
Wol framMathematica and the presented application.
Although it is not possible to edge color a graph in the
mentioned open source tools, a function for the vertex
coloring of the graph is present in the GraphOnline tool.
Thus, we would be able to project the input graph into
the line graph [13] and thus obtain the edge colorability
of the graph. However, such a method of coloring is not
visual and the transformation of the graph itself is not
available in the given tool.

o Specialized analytical functions - none of the available
tools offers the possibility of visualization of the edge
coloring of graph step-by-step - therefore it is not possible
to analyze the coloring in any way. This feature is unique
among graphing tools.

It is important to mention that the possibility of step-by-step
visualization of edge coloring of the graphs is advantageous
from the point of view of the analysis of the coloring itself,
but it brings increased costs in the form of substantial increase
of computational time needed for the problem. In the Tab.II
we present a comparison of computation times for coloring of
the followings: Petersen graph - simplest example of snark (10

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

75

On Graph Coloring Analysis Through Visualization

vertices), the first BlanuSa snark (18 vertices) and 34-vertex
snark generated by the snarkhunter tool [15]. All of these
graphs are cubic, so the number of edges which are colored,
can be computed as (3/2) * n, where n is number of vertices
of the graph.

It is clear that the presented tool needs much higher time
to color the graph itself. This is due to the need to compute
and store all the edge coloring steps of the input graph so that
the graph can be subsequently analyzed. We do not consider
this shortcoming to be important at the moment, as this tool
is used to analyze graphs and not as a tool which computes
the edge colorability of a graph in the shortest possible time
(we presented such an algorithm in [10]).

Table 11
COMPARISON OF COMPUTATION TIME OF EDGE COLORING FOR CHOSEN
SNARKS

Wolfram Mathematica Proposed Tool

Petersen graph 550 ms 670 ms
Blanusa snark 540 ms 840 ms
34-vertex snark 1080 ms 12 440 ms

B. Patterns and Subgraphs of Interest

In this subsection, we present point of view of application
testing focused on the use of the presented application in the
identification of patterns and subgraphs that cause an increase
in the time of computation of edge coloring of graphs.

In the Tab. III we present the number of necessary recolor-
ings of the edges of individual graphs needed for the algorithm
to be able to determine whether the graph is edge 3-colorable
or not. These values are measured on graphs in standard form
- in the form without applying any permutation on the graph
- while using Edge Backtracking Algorithm presented in the
section III, subsection A.

Table III
COMPARISON OF NUMBER OF RECOLORINGS FOR CHOSEN GRAPHS IN
STANDARD FORM

Number of Recolorings

Petersen graph 91
Blanusa snark 1029
34-vertex snark 18 253

The graph with the lowest number of vertices we worked
with was 10 vertex (15 edge) snark - Petersen graph. Edge
3-colorability (or more precisely uncolorability) of this graph
was computed in 91 steps. On the Fig. 4 we see that the
edge coloring of the graph was started on the edge marked
with vertices (Initialg, Initialg) and the graph was being
properly edge colored until the coloring of edge represented
by dashed line. Uncolored edges are marked by a dotted line.

The coloring of this graph was done in 91 steps - out of these
91 step 80 were dedicated to the recoloring of graph related
to the problematic edge marked with the use of dashed line.
This represents 87.9 percent of computation steps needed for
the edge 3-coloring of the graph.

L d \ e, Initiale

Initialg

Figure 4. Analysis of edge coloring of Petersen graph

From the Fig.4, we can identify some properties and infor-
mation about the problematic edge and edge coloring of this
graph:

« problematic edge is incident with initial edge of coloring,

o three of four edges which were not colored are incident

to the initial edge of coloring,

« fourth edge, which was not colored is incident to other

uncolored edge.

Initialg

L
T\ S Initial
. .
Figure 5. Analysis of edge coloring of permuted Petersen graph

To compare this edge coloring of Petersen graph, we used
edge 3-coloring of the permutation of the same graph as
presented in the section III, subsection B (see Fig.5). The
permutation used for the coloring of the graph was randomly
generated, while complying the criteria for permutation matrix
presented in the section III, subsection B. The edge coloring of
graph presented in the Fig.5 was computed in 73 steps. After
analysis of this edge coloring we can identify same properties
and information about the problematic edge and edge coloring

76

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

The International Conference on Information and Digital Technologies 2021

of this graph as in previous case. The only difference is number
of steps needed in order to find the edge coloring of the graph
(see Tab.IV).

Table TV
COMPARISON OF NUMBER OF RECOLORINGS AND TIME OF
COMPUTATION OF EDGE COLORING FOR PETERSEN GRAPH IN STANDARD
FORM AND PERMUTED FORM

10-vertex, 15-edge snark

Number of Recolorings in SF 91
Number of Recolorings in PF 73
Edge Coloring Time in SF 670 ms
Edge Coloring Time in PF 660 ms

As we can see from the Tab.lV, the number of steps
needed for computation was lower while using permuted
graph, but the time of computation of the edge coloring of
graph was almost the same. The values of computational time
presented in the Tab.IV were computed as an average from
five measurements.

In order to further test the application we used the first
Blanusa snark in the same way as the Petersen graph above.
The first BlanuSa snark consists of 18 vertices and 27 edges.
The edge coloring of the graph was computed in 1029 steps.
Out of these 1029 steps, steps 1-64 colored edges properly
with minor recolorings needed. When algorithm found the
problematic edge, it took remaining 965 recolorings to try and
color this edge (which corresponds to 93.8 percent).

Before recoloring, only four edges are not colored properly
- in this case, problematic edge is not incident to the initial
edge of coloring (as oppose to the first examined case), three
of these four edges are incident to the initial edge of coloring
and fourth edge, which was not colored (the problematic one)
is incident to other uncolored edge. We present this coloring
on the Fig.6.

Initialg ..

~._Initial

Figure 6.

Analysis of edge coloring of first Blanusa snark

We also edge colored permuted first BlanuSa snark. The
edge coloring of the permuted graph was computed in 401
steps and contained no single problematic edge. While col-
oring this graph, algorithm encountered number of smaller
problems in coloring which were recolored in 14 - 60 steps.
Therefore, we need to study permutation used in this case and
try to generalize its properties in order to further optimize the
edge 3-coloring of graphs.

In the Tab.V we present comparison of computation times
for edge coloring of the first BlanuSa snark and comparison
of number of step needed for edge coloring of given graph.

Table V
COMPARISON OF NUMBER OF RECOLORINGS AND TIME OF
COMPUTATION OF EDGE COLORING FOR THE FIRST BLANUSA SNARK IN
STANDARD FORM AND PERMUTED FORM

18-vertex, 27-edge snark

Number of Recolorings in SF 1029
Number of Recolorings in PF 401
Edge Coloring Time in SF 840 ms
Edge Coloring Time in PF 710 ms

VI. CONCLUSION

Main objective of the article was to present a tool created
for the need of analysis of edge 3-coloring of graphs based on
visualization of edge coloring and searching for subgraphs and
patterns, which prolong computation of the chosen problem.

We designed and implemented software tool, which can be
used for step-by-step analysis of edge coloring of graphs. On
the basis of this step analysis, we can decide which edge of
the graph is most fitting as an initial edge of coloring of given
graph.

In the section V, subsection B, we presented use of step-
by-step analysis on chosen types of graphs - Petersen graph
and the first BlanuSa snark. With the use of our tool, we were
able to identify some properties and information about the
problematic edges and edge coloring of these graphs.

Even though the function of step analysis of edge coloring
of graph is unique and practical, it also has some drawbacks.
Main shortcoming of proposed tool is time needed for compu-
tation of all steps of coloring - in some cases this visualization
is computed in the time 10-times higher than standard edge
coloring of graph.

Future work in this area contains:

o Use of parallel and distributed computing for optimiza-
tion of computational time needed for visualization of
edge coloring of graph similar to [10], [16]. The edge
coloring can be computed in advance and the visualiza-
tion of individual steps of the coloring can be done in
parallel via either simple thread-based model or via use
of distributed computing.

o Implementation of methods of artificial intelligence,
which would be able to analyze graph coloring and
propose fitting permutation of given graph. We call per-
mutation fitting in such case, that after applying it on the

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

77

On Graph Coloring Analysis Through Visualization

graph (via formula 3), the computational time for edge
coloring of the graph is reduced.

« Using proposed model for analysis of large sets of edge
colored graphs.

« Implementation of user interface for the general use [17]
- mainly formats of data input for application are not user
friendly at the moment.

ACKNOWLEDGMENT

The research was partially supported by the grant of The
Ministry of Education, Science, Research and Sport of Slo-
vak Republic - Implementation of new trends in computer
science to teaching of algorithmic thinking and programming
in Informatics for secondary education, project number KEGA
018UMB-4/2020.

Computing was performed in the High Performance Com-
puting Center of the Matej Bel University in Banska Bystrica
using the HPC infrastructure acquired in project ITMS
26230120002 and 26210120002 (Slovak infrastructure for
high-performance computing) supported by the Research &
Development Operational Programme funded by the ERDFE.

REFERENCES

[1] Marx D.: Graph colouring problems and their applications in scheduling.
In: Periodica Polytechnica, Electrical Engineering, Vol. 48, 2004, No. 1-2,
pp. 11-16.

[2] Chaitin G. J.: Register allocation & spilling via graph colouring.
Proc.1982 SIGPLAN Symposium on Compiler Construction, pp. 98-105,
1982. ISBN 0-89791074-5

[3] Holyer I.: The NP-Completeness of Edge-Colouring. In:
J.COMPUT, Vol. 10, 1981, No. 4, pp. 718-720. ISSN 0097-5397.

[4] Karaba§ J—Madcajovda E—Nedela R.: 6-decomposition of snarks. In:
European Journal of Combinatorics: 20th International workshop on
combinatorial algorithms (IWOCA), Elsevier, Vol. 34, 2013, No. 1,
pp. 111-122. ISSN 0195-6698.

[5] Kowalik L.: Improved edge-coloring with three colors. In: Theoretical
computer science, Vol. 410, 2009, No. 38-40, pp. 3733-3742. ISSN 0304-
3975.

[6] Beigel R., Eppstein D.: 3-coloring in time O(1.3289™). In: J. Algorithms
54(2), 168-204, 2005

[7] Fiol M. A.—Vilaltella J.: A Simple and Fast Heuristic Algorithm for
Edge-coloring of Graphs. In: AKCE International Journal of Graphs and
Combinatorics, Vol. 10, 2013, No. 3, pp. 263-272

[8] Nedela R., Karabas J., Skoviera M.: Nullstellensatz and Recognition of
Snarks. In: 52th Czech-Slovak Conference Grafy, 2017

[9] Dudas A., Skrindrova J., Vostindr P, Sila¢i J.: Improved process of
running tasks in the high performance computing. In: ICETA 2018:
Proceedings: 16th IEEE International Conference on Emerging eLearning
Technologies and Applications. pp 133-140. ISBN 978-1-5386-7912-8.

[10] Dud4s A., Skrindrovd J, Vesel E.: Optimization design for parallel
coloring of a set of graphs in the High-Performance Computing. In:
Proceedings of 2019 IEEE 15th International Scientific Conference on
Informatics. pp 93-99. ISBN 978-1-7281-3178-8.

[11] Dudas A., Janky J., Skrindrova J.: Web applicaiton for graph visu-
alization purposes. In: ICETA 2020: Proceedings: 18th IEEE Interna-
tional Conference on Emerging eLearning Technologies and Applications.
pp 90-96. ISBN 978-0-7381-2366-0.

[12] Palich S.— Pesko S.: Quantitative methods in logistics (in Slovak).
EDIS, Zilina, Slovakia, 2006, ISBN 80-8070-636-0.

[13] Diestel R.: Graph theory. Springer - Verlag, Heidelberg, 2016, ISBN
978-3-662-53621-6.

[14] Héglund J.: On snarks that are far from being 3-edge-colorable. In: The
Elcectronic Journal of Combinatorics, Vol. 23, 2016, No. 2, Paper P2.6.
ISSN: 1077-8926.

[15] Brinkmann G.—Coolsaet K.— Goedgebeur J.—Mélot H.: House of
Graphs: a database of interesting graphs, Discrete Applied Mathematics,
161(1-2):311-314, 2013 (DOI). Available at http://hog.grinvin.org

SIAM

[16] Melicherc¢ik M., Siladi V., Svitek M., Huraj L.: Spreading High Perfor-
mance Computing Skills with E-Learning Support, ICETA 2018 - 16th
IEEE International Conference on Emerging eLearning Technologies and
Applications, 2018, pp. 361-366.

[17] Sedlacek P, Kmec M., Rusnak P.: Software Visualization Application for
Threads Synchronization Handling in Operating Systems. ICETA 2020 -
18th IEEE International Conference on Emerging eLearning Technologies
and Applications, 2020, pp. 580-585

78

978-1-6654-3692-2/21/$31.00 ©2021 IEEE

